Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):711–717. doi: 10.1042/bj3360711

Differential modulation of transcriptional activity of oestrogen receptors by direct protein-protein interactions with retinoid receptors.

M R Song 1, S K Lee 1, Y W Seo 1, H S Choi 1, J W Lee 1, M O Lee 1
PMCID: PMC1219924  PMID: 9841885

Abstract

Control of oestradiol-responsive gene regulation by oestrogen receptors (ERs) may involve complex cross-talk with retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Recently, we have shown that ERalpha directly interacts with RARalpha and RXRalpha through their ligand binding domains (LBDs). In the present work, we extend these results by showing that ERbeta binds similarly to RARalpha and RXRalpha but not to the glucocorticoid receptor, as demonstrated by the yeast two-hybrid tests and glutathione S-transferase pull-down assays. These direct interactions were also demonstrated in gel-shift assays, in which the oestrogen response element (ERE) binding by ERalpha was enhanced by the RXRalpha LBD but was abolished by the RARalpha LBD. In addition, we showed that RARalpha and RXRalpha bound the ERE as efficiently as ERalpha, suggesting that competition for DNA binding may affect the transactivation function of the ER. In transient transfection experiments, co-expression of RARalpha or RXRalpha, along with ERalpha or ERbeta, revealed differential modulation of the ERE-dependent transactivation, which was distinct from the results when each receptor alone was co-transfected. Importantly, when the LBD of RARalpha was co-expressed with ERalpha, transactivation of ERalpha on the ERE was repressed as efficiently as when wild-type RARalpha was co-expressed. Furthermore, liganded RARalpha or unliganded RXRalpha enhanced the ERalpha transactivation, suggesting the formation of transcriptionally active heterodimer complexes between the ER and retinoid receptors. Taken together, these results suggest that direct protein-protein interactions may play major roles in the determination of the biological consequences of cross-talk between ERs and RARalpha or RXRalpha.

Full Text

The Full Text of this article is available as a PDF (218.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anzick S. L., Kononen J., Walker R. L., Azorsa D. O., Tanner M. M., Guan X. Y., Sauter G., Kallioniemi O. P., Trent J. M., Meltzer P. S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997 Aug 15;277(5328):965–968. doi: 10.1126/science.277.5328.965. [DOI] [PubMed] [Google Scholar]
  2. Bogazzi F., Hudson L. D., Nikodem V. M. A novel heterodimerization partner for thyroid hormone receptor. Peroxisome proliferator-activated receptor. J Biol Chem. 1994 Apr 22;269(16):11683–11686. [PubMed] [Google Scholar]
  3. Bugge T. H., Pohl J., Lonnoy O., Stunnenberg H. G. RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J. 1992 Apr;11(4):1409–1418. doi: 10.1002/j.1460-2075.1992.tb05186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen H., Lin R. J., Schiltz R. L., Chakravarti D., Nash A., Nagy L., Privalsky M. L., Nakatani Y., Evans R. M. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997 Aug 8;90(3):569–580. doi: 10.1016/s0092-8674(00)80516-4. [DOI] [PubMed] [Google Scholar]
  5. Cooney A. J., Tsai S. Y., O'Malley B. W., Tsai M. J. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol. 1992 Sep;12(9):4153–4163. doi: 10.1128/mcb.12.9.4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Costa A. Breast cancer chemoprevention. Eur J Cancer. 1993;29A(4):589–592. doi: 10.1016/s0959-8049(05)80158-3. [DOI] [PubMed] [Google Scholar]
  7. Demirpence E., Balaguer P., Trousse F., Nicolas J. C., Pons M., Gagne D. Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res. 1994 Mar 15;54(6):1458–1464. [PubMed] [Google Scholar]
  8. Glass C. K., Holloway J. M., Devary O. V., Rosenfeld M. G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell. 1988 Jul 29;54(3):313–323. doi: 10.1016/0092-8674(88)90194-8. [DOI] [PubMed] [Google Scholar]
  9. Gronemeyer H. Transcription activation by estrogen and progesterone receptors. Annu Rev Genet. 1991;25:89–123. doi: 10.1146/annurev.ge.25.120191.000513. [DOI] [PubMed] [Google Scholar]
  10. Heinzel T., Lavinsky R. M., Mullen T. M., Söderstrom M., Laherty C. D., Torchia J., Yang W. M., Brard G., Ngo S. D., Davie J. R. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997 May 1;387(6628):43–48. doi: 10.1038/387043a0. [DOI] [PubMed] [Google Scholar]
  11. Horwitz K. B., Jackson T. A., Bain D. L., Richer J. K., Takimoto G. S., Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol. 1996 Oct;10(10):1167–1177. doi: 10.1210/mend.10.10.9121485. [DOI] [PubMed] [Google Scholar]
  12. Husmann M., Hoffmann B., Stump D. G., Chytil F., Pfahl M. A retinoic acid response element from the rat CRBPI promoter is activated by an RAR/RXR heterodimer. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1558–1564. doi: 10.1016/0006-291x(92)90480-9. [DOI] [PubMed] [Google Scholar]
  13. Johnston S. D., Liu X., Zuo F., Eisenbraun T. L., Wiley S. R., Kraus R. J., Mertz J. E. Estrogen-related receptor alpha 1 functionally binds as a monomer to extended half-site sequences including ones contained within estrogen-response elements. Mol Endocrinol. 1997 Mar;11(3):342–352. doi: 10.1210/mend.11.3.9897. [DOI] [PubMed] [Google Scholar]
  14. Joyeux A., Balaguer P., Gagne D., Nicolas J. C. In vitro and in vivo interactions between nuclear receptors at estrogen response elements. J Steroid Biochem Mol Biol. 1996 Aug;58(5-6):507–515. doi: 10.1016/0960-0760(96)00082-9. [DOI] [PubMed] [Google Scholar]
  15. Kliewer S. A., Umesono K., Mangelsdorf D. J., Evans R. M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature. 1992 Jan 30;355(6359):446–449. doi: 10.1038/355446a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klinge C. M., Silver B. F., Driscoll M. D., Sathya G., Bambara R. A., Hilf R. Chicken ovalbumin upstream promoter-transcription factor interacts with estrogen receptor, binds to estrogen response elements and half-sites, and inhibits estrogen-induced gene expression. J Biol Chem. 1997 Dec 12;272(50):31465–31474. doi: 10.1074/jbc.272.50.31465. [DOI] [PubMed] [Google Scholar]
  17. Korach K. S. Insights from the study of animals lacking functional estrogen receptor. Science. 1994 Dec 2;266(5190):1524–1527. doi: 10.1126/science.7985022. [DOI] [PubMed] [Google Scholar]
  18. Ktistaki E., Talianidis I. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression. Mol Cell Biol. 1997 May;17(5):2790–2797. doi: 10.1128/mcb.17.5.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuiper G. G., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., Gustafsson J. A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997 Mar;138(3):863–870. doi: 10.1210/endo.138.3.4979. [DOI] [PubMed] [Google Scholar]
  20. Lacroix A., Lippman M. E. Binding of retinoids to human breast cancer cell lines and their effects on cell growth. J Clin Invest. 1980 Mar;65(3):586–591. doi: 10.1172/JCI109703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee M. O., Liu Y., Zhang X. K. A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene. Mol Cell Biol. 1995 Aug;15(8):4194–4207. doi: 10.1128/mcb.15.8.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee S. K., Choi H. S., Song M. R., Lee M. O., Lee J. W. Estrogen receptor, a common interaction partner for a subset of nuclear receptors. Mol Endocrinol. 1998 Aug;12(8):1184–1192. doi: 10.1210/mend.12.8.0146. [DOI] [PubMed] [Google Scholar]
  23. Lehmann J. M., Zhang X. K., Graupner G., Lee M. O., Hermann T., Hoffmann B., Pfahl M. Formation of retinoid X receptor homodimers leads to repression of T3 response: hormonal cross talk by ligand-induced squelching. Mol Cell Biol. 1993 Dec;13(12):7698–7707. doi: 10.1128/mcb.13.12.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leid M., Kastner P., Lyons R., Nakshatri H., Saunders M., Zacharewski T., Chen J. Y., Staub A., Garnier J. M., Mader S. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell. 1992 Jan 24;68(2):377–395. doi: 10.1016/0092-8674(92)90478-u. [DOI] [PubMed] [Google Scholar]
  25. Liu Y., Lee M. O., Wang H. G., Li Y., Hashimoto Y., Klaus M., Reed J. C., Zhang X. Retinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol. 1996 Mar;16(3):1138–1149. doi: 10.1128/mcb.16.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lubahn D. B., Moyer J. S., Golding T. S., Couse J. F., Korach K. S., Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11162–11166. doi: 10.1073/pnas.90.23.11162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moon R. C., Mehta R. G. Chemoprevention of mammary cancer by retinoids. Basic Life Sci. 1990;52:213–224. doi: 10.1007/978-1-4615-9561-8_18. [DOI] [PubMed] [Google Scholar]
  29. Nagy L., Kao H. Y., Chakravarti D., Lin R. J., Hassig C. A., Ayer D. E., Schreiber S. L., Evans R. M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997 May 2;89(3):373–380. doi: 10.1016/s0092-8674(00)80218-4. [DOI] [PubMed] [Google Scholar]
  30. Pace P., Taylor J., Suntharalingam S., Coombes R. C., Ali S. Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor alpha. J Biol Chem. 1997 Oct 10;272(41):25832–25838. doi: 10.1074/jbc.272.41.25832. [DOI] [PubMed] [Google Scholar]
  31. Perlmann T., Evans R. M. Nuclear receptors in Sicily: all in the famiglia. Cell. 1997 Aug 8;90(3):391–397. doi: 10.1016/s0092-8674(00)80498-5. [DOI] [PubMed] [Google Scholar]
  32. Pfahl M., Apfel R., Bendik I., Fanjul A., Graupner G., Lee M. O., La-Vista N., Lu X. P., Piedrafita J., Ortiz M. A. Nuclear retinoid receptors and their mechanism of action. Vitam Horm. 1994;49:327–382. doi: 10.1016/s0083-6729(08)61150-4. [DOI] [PubMed] [Google Scholar]
  33. Pfahl M., Tzukerman M., Zhang X. K., Lehmann J. M., Hermann T., Wills K. N., Graupner G. Nuclear retinoic acid receptors: cloning, analysis, and function. Methods Enzymol. 1990;189:256–270. doi: 10.1016/0076-6879(90)89297-u. [DOI] [PubMed] [Google Scholar]
  34. Rottman J. N., Widom R. L., Nadal-Ginard B., Mahdavi V., Karathanasis S. K. A retinoic acid-responsive element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol. 1991 Jul;11(7):3814–3820. doi: 10.1128/mcb.11.7.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Savouret J. F., Rauch M., Redeuilh G., Sar S., Chauchereau A., Woodruff K., Parker M. G., Milgrom E. Interplay between estrogens, progestins, retinoic acid and AP-1 on a single regulatory site in the progesterone receptor gene. J Biol Chem. 1994 Nov 18;269(46):28955–28962. [PubMed] [Google Scholar]
  36. Savouret J. F., Rauch M., Redeuilh G., Sar S., Chauchereau A., Woodruff K., Parker M. G., Milgrom E. Interplay between estrogens, progestins, retinoic acid and AP-1 on a single regulatory site in the progesterone receptor gene. J Biol Chem. 1994 Nov 18;269(46):28955–28962. [PubMed] [Google Scholar]
  37. Schräder M., Müller K. M., Nayeri S., Kahlen J. P., Carlberg C. Vitamin D3-thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation. Nature. 1994 Aug 4;370(6488):382–386. doi: 10.1038/370382a0. [DOI] [PubMed] [Google Scholar]
  38. Scott R. E., Wu-Peng X. S., Yen P. M., Chin W. W., Pfaff D. W. Interactions of estrogen- and thyroid hormone receptors on a progesterone receptor estrogen response element (ERE) sequence: a comparison with the vitellogenin A2 consensus ERE. Mol Endocrinol. 1997 Oct;11(11):1581–1592. doi: 10.1210/mend.11.11.0003. [DOI] [PubMed] [Google Scholar]
  39. Segars J. H., Marks M. S., Hirschfeld S., Driggers P. H., Martinez E., Grippo J. F., Brown M., Wahli W., Ozato K. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways. Mol Cell Biol. 1993 Apr;13(4):2258–2268. doi: 10.1128/mcb.13.4.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Seol W., Choi H. S., Moore D. D. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science. 1996 May 31;272(5266):1336–1339. doi: 10.1126/science.272.5266.1336. [DOI] [PubMed] [Google Scholar]
  41. Seol W., Hanstein B., Brown M., Moore D. D. Inhibition of estrogen receptor action by the orphan receptor SHP (short heterodimer partner). Mol Endocrinol. 1998 Oct;12(10):1551–1557. doi: 10.1210/mend.12.10.0184. [DOI] [PubMed] [Google Scholar]
  42. Spencer T. E., Jenster G., Burcin M. M., Allis C. D., Zhou J., Mizzen C. A., McKenna N. J., Onate S. A., Tsai S. Y., Tsai M. J. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997 Sep 11;389(6647):194–198. doi: 10.1038/38304. [DOI] [PubMed] [Google Scholar]
  43. Tran P., Zhang X. K., Salbert G., Hermann T., Lehmann J. M., Pfahl M. COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol. 1992 Oct;12(10):4666–4676. doi: 10.1128/mcb.12.10.4666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tremblay G. B., Tremblay A., Copeland N. G., Gilbert D. J., Jenkins N. A., Labrie F., Giguère V. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol. 1997 Mar;11(3):353–365. doi: 10.1210/mend.11.3.9902. [DOI] [PubMed] [Google Scholar]
  45. Tzukerman M., Zhang X. K., Hermann T., Wills K. N., Graupner G., Pfahl M. The human estrogen receptor has transcriptional activator and repressor functions in the absence of ligand. New Biol. 1990 Jul;2(7):613–620. [PubMed] [Google Scholar]
  46. Wu Q., Li Y., Liu R., Agadir A., Lee M. O., Liu Y., Zhang X. Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J. 1997 Apr 1;16(7):1656–1669. doi: 10.1093/emboj/16.7.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yu V. C., Delsert C., Andersen B., Holloway J. M., Devary O. V., När A. M., Kim S. Y., Boutin J. M., Glass C. K., Rosenfeld M. G. RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell. 1991 Dec 20;67(6):1251–1266. doi: 10.1016/0092-8674(91)90301-e. [DOI] [PubMed] [Google Scholar]
  48. Zavacki A. M., Lehmann J. M., Seol W., Willson T. M., Kliewer S. A., Moore D. D. Activation of the orphan receptor RIP14 by retinoids. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7909–7914. doi: 10.1073/pnas.94.15.7909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhang X. K., Hoffmann B., Tran P. B., Graupner G., Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992 Jan 30;355(6359):441–446. doi: 10.1038/355441a0. [DOI] [PubMed] [Google Scholar]
  50. van der Burg B., van der Leede B. M., Kwakkenbos-Isbrücker L., Salverda S., de Laat S. W., van der Saag P. T. Retinoic acid resistance of estradiol-independent breast cancer cells coincides with diminished retinoic acid receptor function. Mol Cell Endocrinol. 1993 Feb;91(1-2):149–157. doi: 10.1016/0303-7207(93)90267-n. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES