Abstract
We have analysed the DNA-protein contacts made between the type I DNA methyltransferase M.EcoR124I and its recognition sequence. The effects of base modifications have been probed by measuring the affinity of M.EcoR124I for the modified sequences relative to that for the wild-type sequence by using gel-retardation competition assays. These results, along with those from methylation interference footprinting and photo-affinity cross-linking have identified the location of potential DNA contacts within the DNA recognition site. Substitution of 6-thioguanosine for each of the three specific guanines in the recognition sequence leads to a large (10-20-fold) decrease in the strength of DNA binding, indicating the importance of hydrogen-bonding interactions in the major groove of DNA. In contrast, replacement of either (or both) of the adenines at the target site for methylation by the enzyme, to produce either a base pair mismatch or loss of the base, leads to a marked increase in DNA-binding affinity. The results strongly support the proposal that type I methyltransferases employ a base-flipping mechanism to methylate their target base.
Full Text
The Full Text of this article is available as a PDF (184.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abadjieva A., Patel J., Webb M., Zinkevich V., Firman K. A deletion mutant of the type IC restriction endonuclease EcoR1241 expressing a novel DNA specificity. Nucleic Acids Res. 1993 Sep 25;21(19):4435–4443. doi: 10.1093/nar/21.19.4435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bickle T. A., Krüger D. H. Biology of DNA restriction. Microbiol Rev. 1993 Jun;57(2):434–450. doi: 10.1128/mr.57.2.434-450.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cal S., Connolly B. A. DNA distortion and base flipping by the EcoRV DNA methyltransferase. A study using interference at dA and T bases and modified deoxynucleosides. J Biol Chem. 1997 Jan 3;272(1):490–496. doi: 10.1074/jbc.272.1.490. [DOI] [PubMed] [Google Scholar]
- Chen A., Powell L. M., Dryden D. T., Murray N. E., Brown T. Tyrosine 27 of the specificity polypeptide of EcoKI can be UV crosslinked to a bromodeoxyuridine-substituted DNA target sequence. Nucleic Acids Res. 1995 Apr 11;23(7):1177–1183. doi: 10.1093/nar/23.7.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper L. P., Dryden D. T. The domains of a type I DNA methyltransferase. Interactions and role in recognition of DNA methylation. J Mol Biol. 1994 Mar 4;236(4):1011–1021. doi: 10.1016/0022-2836(94)90008-6. [DOI] [PubMed] [Google Scholar]
- Cowan G. M., Gann A. A., Murray N. E. Conservation of complex DNA recognition domains between families of restriction enzymes. Cell. 1989 Jan 13;56(1):103–109. doi: 10.1016/0092-8674(89)90988-4. [DOI] [PubMed] [Google Scholar]
- Devchand P. R., McGhee J. D., van de Sande J. H. Uracil-DNA glycosylase as a probe for protein--DNA interactions. Nucleic Acids Res. 1993 Jul 25;21(15):3437–3443. doi: 10.1093/nar/21.15.3437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dryden D. T., Cooper L. P., Murray N. E. Purification and characterization of the methyltransferase from the type 1 restriction and modification system of Escherichia coli K12. J Biol Chem. 1993 Jun 25;268(18):13228–13236. [PubMed] [Google Scholar]
- Fuller-Pace F. V., Murray N. E. Two DNA recognition domains of the specificity polypeptides of a family of type I restriction enzymes. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9368–9372. doi: 10.1073/pnas.83.24.9368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glover S. W. Functional analysis of host-specificity mutants in Escherichia coli. Genet Res. 1970 Apr;15(2):237–250. doi: 10.1017/s0016672300001567. [DOI] [PubMed] [Google Scholar]
- Gubler M., Braguglia D., Meyer J., Piekarowicz A., Bickle T. A. Recombination of constant and variable modules alters DNA sequence recognition by type IC restriction-modification enzymes. EMBO J. 1992 Jan;11(1):233–240. doi: 10.1002/j.1460-2075.1992.tb05046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kannan P., Cowan G. M., Daniel A. S., Gann A. A., Murray N. E. Conservation of organization in the specificity polypeptides of two families of type I restriction enzymes. J Mol Biol. 1989 Oct 5;209(3):335–344. doi: 10.1016/0022-2836(89)90001-6. [DOI] [PubMed] [Google Scholar]
- Klimasauskas S., Kumar S., Roberts R. J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
- Klimasauskas S., Roberts R. J. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 1995 Apr 25;23(8):1388–1395. doi: 10.1093/nar/23.8.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kneale G. G. A symmetrical model for the domain structure of type I DNA methyltransferases. J Mol Biol. 1994 Oct 14;243(1):1–5. doi: 10.1006/jmbi.1994.1624. [DOI] [PubMed] [Google Scholar]
- Kusiak M., Price C., Rice D., Hornby D. P. The HsdS polypeptide of the type IC restriction enzyme EcoR124 is a sequence-specific DNA-binding protein. Mol Microbiol. 1992 Nov;6(21):3251–3256. doi: 10.1111/j.1365-2958.1992.tb01779.x. [DOI] [PubMed] [Google Scholar]
- Lloyd R. S., Cheng X. Mechanistic link between DNA methyltransferases and DNA repair enzymes by base flipping. Biopolymers. 1997;44(2):139–151. doi: 10.1002/(SICI)1097-0282(1997)44:2<139::AID-BIP3>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
- Meister J., MacWilliams M., Hübner P., Jütte H., Skrzypek E., Piekarowicz A., Bickle T. A. Macroevolution by transposition: drastic modification of DNA recognition by a type I restriction enzyme following Tn5 transposition. EMBO J. 1993 Dec;12(12):4585–4591. doi: 10.1002/j.1460-2075.1993.tb06147.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mernagh D. R., Kneale G. G. High resolution footprinting of a type I methyltransferase reveals a large structural distortion within the DNA recognition site. Nucleic Acids Res. 1996 Dec 15;24(24):4853–4858. doi: 10.1093/nar/24.24.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mernagh D. R., Reynolds L. A., Kneale G. G. DNA binding and subunit interactions in the type I methyltransferase M.EcoR124I. Nucleic Acids Res. 1997 Mar 1;25(5):987–991. doi: 10.1093/nar/25.5.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikiforov T. T., Connolly B. A. Oligodeoxynucleotides containing 4-thiothymidine and 6-thiodeoxyguanosine as affinity labels for the Eco RV restriction endonuclease and modification methylase. Nucleic Acids Res. 1992 Mar 25;20(6):1209–1214. doi: 10.1093/nar/20.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel J., Taylor I., Dutta C. F., Kneale G., Firman K. High-level expression of the cloned genes encoding the subunits of and intact DNA methyltransferase, M.EcoR124. Gene. 1992 Mar 1;112(1):21–27. doi: 10.1016/0378-1119(92)90298-4. [DOI] [PubMed] [Google Scholar]
- Powell L. M., Dryden D. T., Willcock D. F., Pain R. H., Murray N. E. DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine. J Mol Biol. 1993 Nov 5;234(1):60–71. doi: 10.1006/jmbi.1993.1563. [DOI] [PubMed] [Google Scholar]
- Powell L. M., Murray N. E. S-adenosyl methionine alters the DNA contacts of the EcoKI methyltransferase. Nucleic Acids Res. 1995 Mar 25;23(6):967–974. doi: 10.1093/nar/23.6.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinisch K. M., Chen L., Verdine G. L., Lipscomb W. N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 1995 Jul 14;82(1):143–153. doi: 10.1016/0092-8674(95)90060-8. [DOI] [PubMed] [Google Scholar]
- Shaw P. E., Stewart A. F. Identification of protein-DNA contacts with dimethyl sulfate. Methylation protection and methylation interference. Methods Mol Biol. 1994;30:79–87. doi: 10.1385/0-89603-256-6:79. [DOI] [PubMed] [Google Scholar]
- Taylor I. A., Davis K. G., Watts D., Kneale G. G. DNA-binding induces a major structural transition in a type I methyltransferase. EMBO J. 1994 Dec 1;13(23):5772–5778. doi: 10.1002/j.1460-2075.1994.tb06915.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor I. A., Webb M., Kneale G. G. Surface labelling of the type I methyltransferase M.EcoR124I reveals lysine residues critical for DNA binding. J Mol Biol. 1996 Apr 26;258(1):62–73. doi: 10.1006/jmbi.1996.0234. [DOI] [PubMed] [Google Scholar]
- Taylor I., Patel J., Firman K., Kneale G. Purification and biochemical characterisation of the EcoR124 type I modification methylase. Nucleic Acids Res. 1992 Jan 25;20(2):179–186. doi: 10.1093/nar/20.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor I., Watts D., Kneale G. Substrate recognition and selectivity in the type IC DNA modification methylase M.EcoR124I. Nucleic Acids Res. 1993 Oct 25;21(21):4929–4935. doi: 10.1093/nar/21.21.4929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyndall C., Meister J., Bickle T. A. The Escherichia coli prr region encodes a functional type IC DNA restriction system closely integrated with an anticodon nuclease gene. J Mol Biol. 1994 Apr 1;237(3):266–274. doi: 10.1006/jmbi.1994.1230. [DOI] [PubMed] [Google Scholar]
- Webb M., Taylor I. A., Firman K., Kneale G. G. Probing the domain structure of the type IC DNA methyltransferase M.EcoR124I by limited proteolysis. J Mol Biol. 1995 Jul 7;250(2):181–190. doi: 10.1006/jmbi.1995.0369. [DOI] [PubMed] [Google Scholar]
- Wilson G. G., Murray N. E. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627. doi: 10.1146/annurev.ge.25.120191.003101. [DOI] [PubMed] [Google Scholar]