Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jan 1;337(Pt 1):1–11.

Nutrient and hormonal regulation of pyruvate kinase gene expression.

K Yamada 1, T Noguchi 1
PMCID: PMC1219928  PMID: 9854017

Abstract

Mammalian pyruvate kinase (PK), a key glycolytic enzyme, has two genes named PKL and PKM, which produce the L- and R-type isoenzymes by means of alternative promoters, and the M1-and M2-types by mutually exclusive alternative splicing respectively. The expression of these genes is tissue-specific and under developmental, dietary and hormonal control. The L-type isoenzyme (L-PK) gene contains multiple regulatory elements necessary for regulation in the 5' flanking region, up to position -170. Both L-II and L-III elements are required for stimulation of L-PK gene transcription by carbohydrates such as glucose and fructose, although the L-III element is itself responsive to carbohydrates. The L-II element is also responsible for the gene regulation by polyunsaturated fatty acids. Nuclear factor-1 proteins and hepatocyte nuclear factor 4, which bind to the L-II element, may also be involved in carbohydrate and polyunsaturated fatty acid regulation of the L-PK gene respectively. However, the L-III-element-binding protein that is involved in carbohydrate regulation remains to be clarified, although involvement by an upstream stimulating factor has been proposed. Available evidence suggests that the carbohydrate signalling pathway to the L-PK gene includes a glucose metabolite, possibly glucose 6-phosphate or xylulose 5-phosphate, as well as phosphorylation and dephosphorylation mechanisms. In addition, at least five regulatory elements have been identified in the 5' flanking region of the PKM gene up to position -279. Sp1-family proteins bind to two proximal elements, but the binding of proteins to other elements have not yet been clarified. Glucose may stimulate the transcription of the PKM gene via hexosamine derivatives. Sp1 may be involved in this regulation via its dephosphorylation, although the carbohydrate response element has not been determined precisely in the PKM gene. Thus glucose stimulates transcription of the PKM gene by the mechanism which is probably different from the L-PK gene.

Full Text

The Full Text of this article is available as a PDF (159.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alevizopoulos A., Dusserre Y., Tsai-Pflugfelder M., von der Weid T., Wahli W., Mermod N. A proline-rich TGF-beta-responsive transcriptional activator interacts with histone H3. Genes Dev. 1995 Dec 15;9(24):3051–3066. doi: 10.1101/gad.9.24.3051. [DOI] [PubMed] [Google Scholar]
  2. Antoine B., Lefrançois-Martinez A. M., Le Guillou G., Leturque A., Vandewalle A., Kahn A. Role of the GLUT 2 glucose transporter in the response of the L-type pyruvate kinase gene to glucose in liver-derived cells. J Biol Chem. 1997 Jul 18;272(29):17937–17943. doi: 10.1074/jbc.272.29.17937. [DOI] [PubMed] [Google Scholar]
  3. Ashizawa K., Fukuda T., Cheng S. Y. Transcriptional stimulation by thyroid hormone of a cytosolic thyroid hormone binding protein which is homologous to a subunit of pyruvate kinase M1. Biochemistry. 1992 Mar 17;31(10):2774–2778. doi: 10.1021/bi00125a018. [DOI] [PubMed] [Google Scholar]
  4. Assimacopoulos-Jeannet F., Jeanrenaud B. Insulin activates 6-phosphofructo-2-kinase and pyruvate kinase in the liver. Indirect evidence for an action via a phosphatase. J Biol Chem. 1990 May 5;265(13):7202–7206. doi: 10.1016/0261-5614(90)90109-6. [DOI] [PubMed] [Google Scholar]
  5. Bergot M. O., Diaz-Guerra M. J., Puzenat N., Raymondjean M., Kahn A. Cis-regulation of the L-type pyruvate kinase gene promoter by glucose, insulin and cyclic AMP. Nucleic Acids Res. 1992 Apr 25;20(8):1871–1877. doi: 10.1093/nar/20.8.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carling D., Aguan K., Woods A., Verhoeven A. J., Beri R. K., Brennan C. H., Sidebottom C., Davison M. D., Scott J. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem. 1994 Apr 15;269(15):11442–11448. [PubMed] [Google Scholar]
  7. Celenza J. L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986 Sep 12;233(4769):1175–1180. doi: 10.1126/science.3526554. [DOI] [PubMed] [Google Scholar]
  8. Chaudhry A. Z., Lyons G. E., Gronostajski R. M. Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development. Dev Dyn. 1997 Mar;208(3):313–325. doi: 10.1002/(SICI)1097-0177(199703)208:3<313::AID-AJA3>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  9. Chaudhry A. Z., Vitullo A. D., Gronostajski R. M. Nuclear factor I (NFI) isoforms differentially activate simple versus complex NFI-responsive promoters. J Biol Chem. 1998 Jul 17;273(29):18538–18546. doi: 10.1074/jbc.273.29.18538. [DOI] [PubMed] [Google Scholar]
  10. Cognet M., Bergot M. O., Kahn A. cis-acting DNA elements regulating expression of the liver pyruvate kinase gene in hepatocytes and hepatoma cells. Evidence for tissue-specific activators and extinguisher. J Biol Chem. 1991 Apr 25;266(12):7368–7375. [PubMed] [Google Scholar]
  11. Crawford D. R., Leahy P., Hu C. Y., Chaudhry A., Gronostajski R., Grossman G., Woods J., Hakimi P., Roesler W. J., Hanson R. W. Nuclear factor I regulates expression of the gene for phosphoenolpyruvate carboxykinase (GTP). J Biol Chem. 1998 May 29;273(22):13387–13390. doi: 10.1074/jbc.273.22.13387. [DOI] [PubMed] [Google Scholar]
  12. Crook E. D., Zhou J., Daniels M., Neidigh J. L., McClain D. A. Regulation of glycogen synthase by glucose, glucosamine, and glutamine:fructose-6-phosphate amidotransferase. Diabetes. 1995 Mar;44(3):314–320. doi: 10.2337/diab.44.3.314. [DOI] [PubMed] [Google Scholar]
  13. Cuif M. H., Cognet M., Boquet D., Tremp G., Kahn A., Vaulont S. Elements responsible for hormonal control and tissue specificity of L-type pyruvate kinase gene expression in transgenic mice. Mol Cell Biol. 1992 Nov;12(11):4852–4861. doi: 10.1128/mcb.12.11.4852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cuif M. H., Porteu A., Kahn A., Vaulont S. Exploration of a liver-specific, glucose/insulin-responsive promoter in transgenic mice. J Biol Chem. 1993 Jul 5;268(19):13769–13772. [PubMed] [Google Scholar]
  15. Daniel S., Kim K. H. Sp1 mediates glucose activation of the acetyl-CoA carboxylase promoter. J Biol Chem. 1996 Jan 19;271(3):1385–1392. doi: 10.1074/jbc.271.3.1385. [DOI] [PubMed] [Google Scholar]
  16. Daniel S., Zhang S., DePaoli-Roach A. A., Kim K. H. Dephosphorylation of Sp1 by protein phosphatase 1 is involved in the glucose-mediated activation of the acetyl-CoA carboxylase gene. J Biol Chem. 1996 Jun 21;271(25):14692–14697. doi: 10.1074/jbc.271.25.14692. [DOI] [PubMed] [Google Scholar]
  17. Decaux J. F., Antoine B., Kahn A. Regulation of the expression of the L-type pyruvate kinase gene in adult rat hepatocytes in primary culture. J Biol Chem. 1989 Jul 15;264(20):11584–11590. [PubMed] [Google Scholar]
  18. Diaz Guerra M. J., Bergot M. O., Martinez A., Cuif M. H., Kahn A., Raymondjean M. Functional characterization of the L-type pyruvate kinase gene glucose response complex. Mol Cell Biol. 1993 Dec;13(12):7725–7733. doi: 10.1128/mcb.13.12.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dills W. L., Jr, Parsons P. D., Westgate C. L., Komplin N. J. Assay, purification, and properties of bovine liver D-xylulokinase. Protein Expr Purif. 1994 Jun;5(3):259–265. doi: 10.1006/prep.1994.1039. [DOI] [PubMed] [Google Scholar]
  20. Doiron B., Cuif M. H., Chen R., Kahn A. Transcriptional glucose signaling through the glucose response element is mediated by the pentose phosphate pathway. J Biol Chem. 1996 Mar 8;271(10):5321–5324. doi: 10.1074/jbc.271.10.5321. [DOI] [PubMed] [Google Scholar]
  21. Doiron B., Cuif M. H., Kahn A., Diaz-Guerra M. J. Respective roles of glucose, fructose, and insulin in the regulation of the liver-specific pyruvate kinase gene promoter. J Biol Chem. 1994 Apr 8;269(14):10213–10216. [PubMed] [Google Scholar]
  22. El-Maghrabi M. R., Haston W. S., Flockhart D. A., Claus T. H., Pilkis S. J. Studies on the phosphorylation and dephosphorylation of L-type pyruvate kinase by the catalytic subunit of cyclic AMP-dependent protein kinase. J Biol Chem. 1980 Jan 25;255(2):668–675. [PubMed] [Google Scholar]
  23. Foretz M., Carling D., Guichard C., Ferré P., Foufelle F. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem. 1998 Jun 12;273(24):14767–14771. doi: 10.1074/jbc.273.24.14767. [DOI] [PubMed] [Google Scholar]
  24. Foufelle F., Gouhot B., Pégorier J. P., Perdereau D., Girard J., Ferré P. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J Biol Chem. 1992 Oct 15;267(29):20543–20546. [PubMed] [Google Scholar]
  25. Fukuda H., Iritani N., Noguchi T. Transcriptional regulatory region for expression of the rat ATP citrate-lyase gene. Eur J Biochem. 1997 Jul 15;247(2):497–502. doi: 10.1111/j.1432-1033.1997.00497.x. [DOI] [PubMed] [Google Scholar]
  26. Gil G., Osborne T. F., Goldstein J. L., Brown M. S. Purification of a protein doublet that binds to six TGG-containing sequences in the promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem. 1988 Dec 15;263(35):19009–19019. [PubMed] [Google Scholar]
  27. Gounari F., De Francesco R., Schmitt J., van der Vliet P., Cortese R., Stunnenberg H. Amino-terminal domain of NF1 binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J. 1990 Feb;9(2):559–566. doi: 10.1002/j.1460-2075.1990.tb08143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gregor P. D., Sawadogo M., Roeder R. G. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev. 1990 Oct;4(10):1730–1740. doi: 10.1101/gad.4.10.1730. [DOI] [PubMed] [Google Scholar]
  29. Greiner E. F., Guppy M., Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem. 1994 Dec 16;269(50):31484–31490. [PubMed] [Google Scholar]
  30. Hertz R., Magenheim J., Berman I., Bar-Tana J. Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha. Nature. 1998 Apr 2;392(6675):512–516. doi: 10.1038/33185. [DOI] [PubMed] [Google Scholar]
  31. Hertz R., Seckbach M., Zakin M. M., Bar-Tana J. Transcriptional suppression of the transferrin gene by hypolipidemic peroxisome proliferators. J Biol Chem. 1996 Jan 5;271(1):218–224. doi: 10.1074/jbc.271.1.218. [DOI] [PubMed] [Google Scholar]
  32. Ikeda Y., Noguchi T. Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact. J Biol Chem. 1998 May 15;273(20):12227–12233. doi: 10.1074/jbc.273.20.12227. [DOI] [PubMed] [Google Scholar]
  33. Ikeda Y., Tanaka T., Noguchi T. Conversion of non-allosteric pyruvate kinase isozyme into an allosteric enzyme by a single amino acid substitution. J Biol Chem. 1997 Aug 15;272(33):20495–20501. doi: 10.1074/jbc.272.33.20495. [DOI] [PubMed] [Google Scholar]
  34. Inoue H., Noguchi T., Tanaka T. Complete amino acid sequence of rat L-type pyruvate kinase deduced from the cDNA sequence. Eur J Biochem. 1986 Jan 15;154(2):465–469. doi: 10.1111/j.1432-1033.1986.tb09420.x. [DOI] [PubMed] [Google Scholar]
  35. Inoue H., Noguchi T., Tanaka T. Rapid regulation of L-type pyruvate kinase mRNA by fructose in diabetic rat liver. J Biochem. 1984 Nov;96(5):1457–1462. doi: 10.1093/oxfordjournals.jbchem.a134974. [DOI] [PubMed] [Google Scholar]
  36. Iritani N., Fukuda H., Tada K., Itoh A., Noguchi T. Diet differentially regulates glucokinase and L-type pyruvate kinase gene expression in rat liver. J Nutr. 1995 Dec;125(12):2945–2952. doi: 10.1093/jn/125.12.2945. [DOI] [PubMed] [Google Scholar]
  37. Ishibashi H., Cottam G. L. Glucagon-stimulated phosphorylation of pyruvate kinase in hepatocytes. J Biol Chem. 1978 Dec 25;253(24):8767–8771. [PubMed] [Google Scholar]
  38. Iynedjian P. B., Jotterand D., Nouspikel T., Asfari M., Pilot P. R. Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system. J Biol Chem. 1989 Dec 25;264(36):21824–21829. [PubMed] [Google Scholar]
  39. Iynedjian P. B., Pilot P. R., Nouspikel T., Milburn J. L., Quaade C., Hughes S., Ucla C., Newgard C. B. Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7838–7842. doi: 10.1073/pnas.86.20.7838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Jump D. B., Clarke S. D., Thelen A., Liimatta M. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res. 1994 Jun;35(6):1076–1084. [PubMed] [Google Scholar]
  41. Kang R., Yamada K., Tanaka T., Lu T., Noguchi T. Relationship between the concentrations of glycolytic intermediates and expression of the L-type pyruvate kinase gene in cultured hepatocytes. J Biochem. 1996 Jan;119(1):162–166. doi: 10.1093/oxfordjournals.jbchem.a021203. [DOI] [PubMed] [Google Scholar]
  42. Kanno H., Fujii H., Miwa S. Structural analysis of human pyruvate kinase L-gene and identification of the promoter activity in erythroid cells. Biochem Biophys Res Commun. 1992 Oct 30;188(2):516–523. doi: 10.1016/0006-291x(92)91086-6. [DOI] [PubMed] [Google Scholar]
  43. Kato H., Fukuda T., Parkison C., McPhie P., Cheng S. Y. Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7861–7865. doi: 10.1073/pnas.86.20.7861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kaytor E. N., Shih H., Towle H. C. Carbohydrate regulation of hepatic gene expression. Evidence against a role for the upstream stimulatory factor. J Biol Chem. 1997 Mar 14;272(11):7525–7531. doi: 10.1074/jbc.272.11.7525. [DOI] [PubMed] [Google Scholar]
  45. Kennedy H. J., Viollet B., Rafiq I., Kahn A., Rutter G. A. Upstream stimulatory factor-2 (USF2) activity is required for glucose stimulation of L-pyruvate kinase promoter activity in single living islet beta-cells. J Biol Chem. 1997 Aug 15;272(33):20636–20640. doi: 10.1074/jbc.272.33.20636. [DOI] [PubMed] [Google Scholar]
  46. Kruse U., Sippel A. E. Transcription factor nuclear factor I proteins form stable homo- and heterodimers. FEBS Lett. 1994 Jul 4;348(1):46–50. doi: 10.1016/0014-5793(94)00585-0. [DOI] [PubMed] [Google Scholar]
  47. Leclerc I., Kahn A., Doiron B. The 5'-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett. 1998 Jul 17;431(2):180–184. doi: 10.1016/s0014-5793(98)00745-5. [DOI] [PubMed] [Google Scholar]
  48. Lefrançois-Martinez A. M., Martinez A., Antoine B., Raymondjean M., Kahn A. Upstream stimulatory factor proteins are major components of the glucose response complex of the L-type pyruvate kinase gene promoter. J Biol Chem. 1995 Feb 10;270(6):2640–2643. doi: 10.1074/jbc.270.6.2640. [DOI] [PubMed] [Google Scholar]
  49. Liimatta M., Towle H. C., Clarke S., Jump D. B. Dietary polyunsaturated fatty acids interfere with the insulin/glucose activation of L-type pyruvate kinase gene transcription. Mol Endocrinol. 1994 Sep;8(9):1147–1153. doi: 10.1210/mend.8.9.7838147. [DOI] [PubMed] [Google Scholar]
  50. Liu Z., Thompson K. S., Towle H. C. Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A1 and a member of the c-myc family. J Biol Chem. 1993 Jun 15;268(17):12787–12795. [PubMed] [Google Scholar]
  51. Liu Z., Towle H. C. Functional synergism in the carbohydrate-induced activation of liver-type pyruvate kinase gene expression. Biochem J. 1995 May 15;308(Pt 1):105–111. doi: 10.1042/bj3080105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Lonberg N., Gilbert W. Intron/exon structure of the chicken pyruvate kinase gene. Cell. 1985 Jan;40(1):81–90. doi: 10.1016/0092-8674(85)90311-3. [DOI] [PubMed] [Google Scholar]
  53. Lone Y. C., Simon M. P., Kahn A., Marie J. Complete nucleotide and deduced amino acid sequences of rat L-type pyruvate kinase. FEBS Lett. 1986 Jan 20;195(1-2):97–100. doi: 10.1016/0014-5793(86)80138-7. [DOI] [PubMed] [Google Scholar]
  54. Magnuson M. A., Shelton K. D. An alternate promoter in the glucokinase gene is active in the pancreatic beta cell. J Biol Chem. 1989 Sep 25;264(27):15936–15942. [PubMed] [Google Scholar]
  55. Marie S., Diaz-Guerra M. J., Miquerol L., Kahn A., Iynedjian P. B. The pyruvate kinase gene as a model for studies of glucose-dependent regulation of gene expression in the endocrine pancreatic beta-cell type. J Biol Chem. 1993 Nov 15;268(32):23881–23890. [PubMed] [Google Scholar]
  56. Marshall S., Bacote V., Traxinger R. R. Complete inhibition of glucose-induced desensitization of the glucose transport system by inhibitors of mRNA synthesis. Evidence for rapid turnover of glutamine:fructose-6-phosphate amidotransferase. J Biol Chem. 1991 Jun 5;266(16):10155–10161. [PubMed] [Google Scholar]
  57. Marshall S., Bacote V., Traxinger R. R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991 Mar 15;266(8):4706–4712. [PubMed] [Google Scholar]
  58. Massillon D., Chen W., Barzilai N., Prus-Wertheimer D., Hawkins M., Liu R., Taub R., Rossetti L. Carbon flux via the pentose phosphate pathway regulates the hepatic expression of the glucose-6-phosphatase and phosphoenolpyruvate carboxykinase genes in conscious rats. J Biol Chem. 1998 Jan 2;273(1):228–234. doi: 10.1074/jbc.273.1.228. [DOI] [PubMed] [Google Scholar]
  59. Matsuda T., Noguchi T., Takenaka M., Yamada K., Tanaka T. Regulation of L-type pyruvate kinase gene expression by dietary fructose in normal and diabetic rats. J Biochem. 1990 Apr;107(4):655–660. doi: 10.1093/oxfordjournals.jbchem.a123103. [DOI] [PubMed] [Google Scholar]
  60. Matsuda T., Noguchi T., Yamada K., Takenaka M., Tanaka T. Regulation of the gene expression of glucokinase and L-type pyruvate kinase in primary cultures of rat hepatocytes by hormones and carbohydrates. J Biochem. 1990 Nov;108(5):778–784. doi: 10.1093/oxfordjournals.jbchem.a123280. [DOI] [PubMed] [Google Scholar]
  61. McClain D. A., Crook E. D. Hexosamines and insulin resistance. Diabetes. 1996 Aug;45(8):1003–1009. doi: 10.2337/diab.45.8.1003. [DOI] [PubMed] [Google Scholar]
  62. Mourrieras F., Foufelle F., Foretz M., Morin J., Bouche S., Ferre P. Induction of fatty acid synthase and S14 gene expression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations. Biochem J. 1997 Sep 1;326(Pt 2):345–349. doi: 10.1042/bj3260345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Muirhead H., Clayden D. A., Barford D., Lorimer C. G., Fothergill-Gilmore L. A., Schiltz E., Schmitt W. The structure of cat muscle pyruvate kinase. EMBO J. 1986 Mar;5(3):475–481. doi: 10.1002/j.1460-2075.1986.tb04236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Muirhead H. Isoenzymes of pyruvate kinase. Biochem Soc Trans. 1990 Apr;18(2):193–196. doi: 10.1042/bst0180193. [DOI] [PubMed] [Google Scholar]
  65. Munnich A., Lyonnet S., Chauvet D., Van Schaftingen E., Kahn A. Differential effects of glucose and fructose on liver L-type pyruvate kinase gene expression in vivo. J Biol Chem. 1987 Dec 15;262(35):17065–17071. [PubMed] [Google Scholar]
  66. Nakshatri H., Bhat-Nakshatri P. Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements. Nucleic Acids Res. 1998 May 15;26(10):2491–2499. doi: 10.1093/nar/26.10.2491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Netzker R., Greiner E., Eigenbrodt E., Noguchi T., Tanaka T., Brand K. Cell cycle-associated expression of M2-type isozyme of pyruvate kinase in proliferating rat thymocytes. J Biol Chem. 1992 Mar 25;267(9):6421–6424. [PubMed] [Google Scholar]
  68. Netzker R., Weigert C., Brand K. Role of the stimulatory proteins Sp1 and Sp3 in the regulation of transcription of the rat pyruvate kinase M gene. Eur J Biochem. 1997 Apr 1;245(1):174–181. doi: 10.1111/j.1432-1033.1997.00174.x. [DOI] [PubMed] [Google Scholar]
  69. Nishimura M., Uyeda K. Purification and characterization of a novel xylulose 5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J Biol Chem. 1995 Nov 3;270(44):26341–26346. doi: 10.1074/jbc.270.44.26341. [DOI] [PubMed] [Google Scholar]
  70. Noguchi T., Inoue H., Chen H. L., Matsubara K., Tanaka T. Molecular cloning of DNA complementary to rat L-type pyruvate kinase mRNA. Nutritional and hormonal regulation of L-type pyruvate kinase mRNA concentration. J Biol Chem. 1983 Dec 25;258(24):15220–15223. [PubMed] [Google Scholar]
  71. Noguchi T., Inoue H., Tanaka T. Regulation of rat liver L-type pyruvate kinase mRNA by insulin and by fructose. Eur J Biochem. 1982 Nov 15;128(2-3):583–588. doi: 10.1111/j.1432-1033.1982.tb07004.x. [DOI] [PubMed] [Google Scholar]
  72. Noguchi T., Inoue H., Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986 Oct 15;261(29):13807–13812. [PubMed] [Google Scholar]
  73. Noguchi T., Inoue H., Tanaka T. Transcriptional and post-transcriptional regulation of L-type pyruvate kinase in diabetic rat liver by insulin and dietary fructose. J Biol Chem. 1985 Nov 15;260(26):14393–14397. [PubMed] [Google Scholar]
  74. Noguchi T., Matsuda T., Tomari Y., Yamada K., Imai E., Wang Z., Ikeda H., Tanaka T. The regulation of gene expression by insulin is differentially impaired in the liver of the genetically obese-hyperglycemic Wistar fatty rat. FEBS Lett. 1993 Aug 9;328(1-2):145–148. doi: 10.1016/0014-5793(93)80982-z. [DOI] [PubMed] [Google Scholar]
  75. Noguchi T., Okabe M., Wang Z., Yamada K., Imai E., Tanaka T. An enhancer unit of L-type pyruvate kinase gene is responsible for transcriptional stimulation by dietary fructose as well as glucose in transgenic mice. FEBS Lett. 1993 Mar 8;318(3):269–272. doi: 10.1016/0014-5793(93)80526-z. [DOI] [PubMed] [Google Scholar]
  76. Noguchi T., Yamada K., Inoue H., Matsuda T., Tanaka T. The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem. 1987 Oct 15;262(29):14366–14371. [PubMed] [Google Scholar]
  77. Noguchi T., Yamada K., Yamagata K., Takenaka M., Nakajima H., Imai E., Wang Z., Tanaka T. Expression of liver type pyruvate kinase in insulinoma cells: involvement of LF-B1 (HNF1). Biochem Biophys Res Commun. 1991 Nov 27;181(1):259–264. doi: 10.1016/s0006-291x(05)81411-1. [DOI] [PubMed] [Google Scholar]
  78. Ogier H., Munnich A., Lyonnet S., Vaulont S., Reach G., Kahn A. Dietary and hormonal regulation of L-type pyruvate kinase gene expression in rat small intestine. Eur J Biochem. 1987 Jul 15;166(2):365–370. doi: 10.1111/j.1432-1033.1987.tb13524.x. [DOI] [PubMed] [Google Scholar]
  79. Oppenheimer J. H., Schwartz H. L., Mariash C. N., Kinlaw W. B., Wong N. C., Freake H. C. Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev. 1987 Aug;8(3):288–308. doi: 10.1210/edrv-8-3-288. [DOI] [PubMed] [Google Scholar]
  80. Paonessa G., Gounari F., Frank R., Cortese R. Purification of a NF1-like DNA-binding protein from rat liver and cloning of the corresponding cDNA. EMBO J. 1988 Oct;7(10):3115–3123. doi: 10.1002/j.1460-2075.1988.tb03178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Pessin J. E., Bell G. I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu Rev Physiol. 1992;54:911–930. doi: 10.1146/annurev.ph.54.030192.004403. [DOI] [PubMed] [Google Scholar]
  82. Pognonec P., Kato H., Roeder R. G. The helix-loop-helix/leucine repeat transcription factor USF can be functionally regulated in a redox-dependent manner. J Biol Chem. 1992 Dec 5;267(34):24563–24567. [PubMed] [Google Scholar]
  83. Ren B., Thelen A. P., Peters J. M., Gonzalez F. J., Jump D. B. Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alpha. J Biol Chem. 1997 Oct 24;272(43):26827–26832. doi: 10.1074/jbc.272.43.26827. [DOI] [PubMed] [Google Scholar]
  84. Riccio A., Pedone P. V., Lund L. R., Olesen T., Olsen H. S., Andreasen P. A. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene. Mol Cell Biol. 1992 Apr;12(4):1846–1855. doi: 10.1128/mcb.12.4.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Riu E., Bosch F., Valera A. Prevention of diabetic alterations in transgenic mice overexpressing Myc in the liver. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2198–2202. doi: 10.1073/pnas.93.5.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Rupp R. A., Kruse U., Multhaup G., Göbel U., Beyreuther K., Sippel A. E. Chicken NFI/TGGCA proteins are encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues in mammalian genomes. Nucleic Acids Res. 1990 May 11;18(9):2607–2616. doi: 10.1093/nar/18.9.2607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Saheki S., Saheki K., Tanaka T. Changes in pyruvate kinase isozymes of rat small intestine during development and the synergistic effect on them of thyroid and glucocorticoid hormones. Enzyme. 1979;24(1):8–17. doi: 10.1159/000458623. [DOI] [PubMed] [Google Scholar]
  88. Santoro C., Mermod N., Andrews P. C., Tjian R. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature. 1988 Jul 21;334(6179):218–224. doi: 10.1038/334218a0. [DOI] [PubMed] [Google Scholar]
  89. Sawadogo M., Van Dyke M. W., Gregor P. D., Roeder R. G. Multiple forms of the human gene-specific transcription factor USF. I. Complete purification and identification of USF from HeLa cell nuclei. J Biol Chem. 1988 Aug 25;263(24):11985–11993. [PubMed] [Google Scholar]
  90. Schäfer D., Hamm-Künzelmann B., Brand K. Glucose regulates the promoter activity of aldolase A and pyruvate kinase M2 via dephosphorylation of Sp1. FEBS Lett. 1997 Nov 17;417(3):325–328. doi: 10.1016/s0014-5793(97)01314-8. [DOI] [PubMed] [Google Scholar]
  91. Schäfer D., Hamm-Künzelmann B., Hermfisse U., Brand K. Differences in DNA-binding efficiency of Sp1 to aldolase and pyruvate kinase promoter correlate with altered redox states in resting and proliferating rat thymocytes. FEBS Lett. 1996 Aug 5;391(1-2):35–38. doi: 10.1016/0014-5793(96)00701-6. [DOI] [PubMed] [Google Scholar]
  92. Shih H. M., Liu Z., Towle H. C. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem. 1995 Sep 15;270(37):21991–21997. doi: 10.1074/jbc.270.37.21991. [DOI] [PubMed] [Google Scholar]
  93. Shih H. M., Towle H. C. Definition of the carbohydrate response element of the rat S14 gene. Evidence for a common factor required for carbohydrate regulation of hepatic genes. J Biol Chem. 1992 Jul 5;267(19):13222–13228. [PubMed] [Google Scholar]
  94. Sirito M., Lin Q., Maity T., Sawadogo M. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 1994 Feb 11;22(3):427–433. doi: 10.1093/nar/22.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Sirito M., Walker S., Lin Q., Kozlowski M. T., Klein W. H., Sawadogo M. Members of the USF family of helix-loop-helix proteins bind DNA as homo- as well as heterodimers. Gene Expr. 1992;2(3):231–240. [PMC free article] [PubMed] [Google Scholar]
  96. Stuart D. I., Levine M., Muirhead H., Stammers D. K. Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A. J Mol Biol. 1979 Oct 15;134(1):109–142. doi: 10.1016/0022-2836(79)90416-9. [DOI] [PubMed] [Google Scholar]
  97. Sudo Y., Mariash C. N. Two glucose-signaling pathways in S14 gene transcription in primary hepatocytes: a common role of protein phosphorylation. Endocrinology. 1994 Jun;134(6):2532–2540. doi: 10.1210/endo.134.6.8194479. [DOI] [PubMed] [Google Scholar]
  98. Takenaka M., Noguchi T., Inoue H., Yamada K., Matsuda T., Tanaka T. Rat pyruvate kinase M gene. Its complete structure and characterization of the 5'-flanking region. J Biol Chem. 1989 Feb 5;264(4):2363–2367. [PubMed] [Google Scholar]
  99. Takenaka M., Noguchi T., Sadahiro S., Hirai H., Yamada K., Matsuda T., Imai E., Tanaka T. Isolation and characterization of the human pyruvate kinase M gene. Eur J Biochem. 1991 May 23;198(1):101–106. doi: 10.1111/j.1432-1033.1991.tb15991.x. [DOI] [PubMed] [Google Scholar]
  100. Takenaka M., Yamada K., Lu T., Kang R., Tanaka T., Noguchi T. Alternative splicing of the pyruvate kinase M gene in a minigene system. Eur J Biochem. 1996 Jan 15;235(1-2):366–371. doi: 10.1111/j.1432-1033.1996.00366.x. [DOI] [PubMed] [Google Scholar]
  101. Tanaka T., Harano Y., Sue F., Morimura H. Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. J Biochem. 1967 Jul;62(1):71–91. doi: 10.1093/oxfordjournals.jbchem.a128639. [DOI] [PubMed] [Google Scholar]
  102. Thompson K. S., Towle H. C. Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene. J Biol Chem. 1991 May 15;266(14):8679–8682. [PubMed] [Google Scholar]
  103. Traxinger R. R., Marshall S. Coordinated regulation of glutamine:fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem. 1991 Jun 5;266(16):10148–10154. [PubMed] [Google Scholar]
  104. Traxinger R. R., Marshall S. Insulin regulation of pyruvate kinase activity in isolated adipocytes. Crucial role of glucose and the hexosamine biosynthesis pathway in the expression of insulin action. J Biol Chem. 1992 May 15;267(14):9718–9723. [PubMed] [Google Scholar]
  105. Tremp G. L., Boquet D., Ripoche M. A., Cognet M., Lone Y. C., Jami J., Kahn A., Daegelen D. Expression of the rat L-type pyruvate kinase gene from its dual erythroid- and liver-specific promoter in transgenic mice. J Biol Chem. 1989 Nov 25;264(33):19904–19910. [PubMed] [Google Scholar]
  106. Valera A., Pujol A., Gregori X., Riu E., Visa J., Bosch F. Evidence from transgenic mice that myc regulates hepatic glycolysis. FASEB J. 1995 Aug;9(11):1067–1078. doi: 10.1096/fasebj.9.11.7649406. [DOI] [PubMed] [Google Scholar]
  107. Vallet V. S., Casado M., Henrion A. A., Bucchini D., Raymondjean M., Kahn A., Vaulont S. Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose. J Biol Chem. 1998 Aug 7;273(32):20175–20179. doi: 10.1074/jbc.273.32.20175. [DOI] [PubMed] [Google Scholar]
  108. Vallet V. S., Henrion A. A., Bucchini D., Casado M., Raymondjean M., Kahn A., Vaulont S. Glucose-dependent liver gene expression in upstream stimulatory factor 2 -/- mice. J Biol Chem. 1997 Aug 29;272(35):21944–21949. doi: 10.1074/jbc.272.35.21944. [DOI] [PubMed] [Google Scholar]
  109. Van Schaftingen E., Detheux M., Veiga da Cunha M. Short-term control of glucokinase activity: role of a regulatory protein. FASEB J. 1994 Apr 1;8(6):414–419. doi: 10.1096/fasebj.8.6.8168691. [DOI] [PubMed] [Google Scholar]
  110. Van Schaftingen E., Vandercammen A. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes. Eur J Biochem. 1989 Jan 15;179(1):173–177. doi: 10.1111/j.1432-1033.1989.tb14537.x. [DOI] [PubMed] [Google Scholar]
  111. Vandercammen A., Van Schaftingen E. Species and tissue distribution of the regulatory protein of glucokinase. Biochem J. 1993 Sep 1;294(Pt 2):551–556. doi: 10.1042/bj2940551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Vaulont S., Puzenat N., Levrat F., Cognet M., Kahn A., Raymondjean M. Proteins binding to the liver-specific pyruvate kinase gene promoter. A unique combination of known factors. J Mol Biol. 1989 Sep 20;209(2):205–219. doi: 10.1016/0022-2836(89)90273-8. [DOI] [PubMed] [Google Scholar]
  113. Viollet B., Kahn A., Raymondjean M. Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4. Mol Cell Biol. 1997 Aug;17(8):4208–4219. doi: 10.1128/mcb.17.8.4208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Viollet B., Lefrançois-Martinez A. M., Henrion A., Kahn A., Raymondjean M., Martinez A. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms. J Biol Chem. 1996 Jan 19;271(3):1405–1415. doi: 10.1074/jbc.271.3.1405. [DOI] [PubMed] [Google Scholar]
  115. Wang J., Liu R., Hawkins M., Barzilai N., Rossetti L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature. 1998 Jun 18;393(6686):684–688. doi: 10.1038/31474. [DOI] [PubMed] [Google Scholar]
  116. Wang Z., Takenaka M., Imai E., Yamada K., Tanaka T., Noguchi T. Transcriptional regulatory regions for expression of the rat pyruvate kinase M gene. Eur J Biochem. 1994 Mar 1;220(2):301–307. doi: 10.1111/j.1432-1033.1994.tb18626.x. [DOI] [PubMed] [Google Scholar]
  117. Yamada K., Noguchi T., Matsuda T., Takenaka M., Monaci P., Nicosia A., Tanaka T. Identification and characterization of hepatocyte-specific regulatory regions of the rat pyruvate kinase L gene. The synergistic effect of multiple elements. J Biol Chem. 1990 Nov 15;265(32):19885–19891. [PubMed] [Google Scholar]
  118. Yamada K., Noguchi T., Miyazaki J., Matsuda T., Takenaka M., Yamamura K., Tanaka T. Tissue-specific expression of rat pyruvate kinase L/chloramphenicol acetyltransferase fusion gene in transgenic mice and its regulation by diet and insulin. Biochem Biophys Res Commun. 1990 Aug 31;171(1):243–249. doi: 10.1016/0006-291x(90)91383-4. [DOI] [PubMed] [Google Scholar]
  119. Yamada K., Tanaka T., Noguchi T. Members of the nuclear factor 1 family and hepatocyte nuclear factor 4 bind to overlapping sequences of the L-II element on the rat pyruvate kinase L gene promoter and regulate its expression. Biochem J. 1997 Jun 15;324(Pt 3):917–925. doi: 10.1042/bj3240917. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES