Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jan 1;337(Pt 1):19–22.

Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.

C Szegedi 1, S Sárközi 1, A Herzog 1, I Jóna 1, M Varsányi 1
PMCID: PMC1219930  PMID: 9854019

Abstract

In striated muscle, the sarcoplasmic reticulum (SR) Ca2+ release/ryanodine receptor (RyR) channel provides the pathway through which stored Ca2+ is released into the myoplasm during excitation-contraction coupling. Various luminal Ca2+-binding proteins are responsible for maintaining the free [Ca2+] at 10(-3)-10(-4) M in the SR lumen; in skeletal-muscle SR, it is mainly calsequestrin. Here we show that, depending on its phosphorylation state, calsequestrin selectively controls the RyR channel activity at 1 mM free luminal [Ca2+]. Calsequestrin exclusively in the dephosphorylated state enhanced the open probability by approx. 5-fold with a Hill coefficient (h) of 3.3, and increased the mean open time by about 2-fold, i.e. solely dephosphorylated calsequestrin regulates Ca2+ release from the SR. Because calsequestrin has been found to occur mainly in the phosphorylated state in the skeletal-muscle SR for the regulation of RyR channel activity, the dephosphorylation of calsequestrin would appear to be a quintessential physiological event.

Full Text

The Full Text of this article is available as a PDF (119.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor S. M., Chandler W. K., Marshall M. W. Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients. J Physiol. 1983 Nov;344:625–666. doi: 10.1113/jphysiol.1983.sp014959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cala S. E., Jones L. R. Phosphorylation of cardiac and skeletal muscle calsequestrin isoforms by casein kinase II. Demonstration of a cluster of unique rapidly phosphorylated sites in cardiac calsequestrin. J Biol Chem. 1991 Jan 5;266(1):391–398. [PubMed] [Google Scholar]
  3. Cala S. E., Jones L. R. Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-sepharose. J Biol Chem. 1983 Oct 10;258(19):11932–11936. [PubMed] [Google Scholar]
  4. Caudwell B., Antoniw J. F., Cohen P. Calsequestrin, myosin, and the components of the protein-glycogen complex in rabbit skeletal muscle. Eur J Biochem. 1978 May 16;86(2):511–518. doi: 10.1111/j.1432-1033.1978.tb12334.x. [DOI] [PubMed] [Google Scholar]
  5. Eisenberg B. R., Kuda A. M., Peter J. B. Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig. J Cell Biol. 1974 Mar;60(3):732–754. doi: 10.1083/jcb.60.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fleischer S., Inui M. Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Biophys Chem. 1989;18:333–364. doi: 10.1146/annurev.bb.18.060189.002001. [DOI] [PubMed] [Google Scholar]
  7. Franzini-Armstrong C., Protasi F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev. 1997 Jul;77(3):699–729. doi: 10.1152/physrev.1997.77.3.699. [DOI] [PubMed] [Google Scholar]
  8. Gilchrist J. S., Belcastro A. N., Katz S. Intraluminal Ca2+ dependence of Ca2+ and ryanodine-mediated regulation of skeletal muscle sarcoplasmic reticulum Ca2+ release. J Biol Chem. 1992 Oct 15;267(29):20850–20856. [PubMed] [Google Scholar]
  9. Han J. W., Thieleczek R., Varsányi M., Heilmeyer L. M., Jr Compartmentalized ATP synthesis in skeletal muscle triads. Biochemistry. 1992 Jan 21;31(2):377–384. doi: 10.1021/bi00117a010. [DOI] [PubMed] [Google Scholar]
  10. Herrmann-Frank A., Varsányi M. Enhancement of Ca2+ release channel activity by phosphorylation of the skeletal muscle ryanodine receptor. FEBS Lett. 1993 Oct 18;332(3):237–242. doi: 10.1016/0014-5793(93)80640-g. [DOI] [PubMed] [Google Scholar]
  11. Hofmann S. L., Goldstein J. L., Orth K., Moomaw C. R., Slaughter C. A., Brown M. S. Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. J Biol Chem. 1989 Oct 25;264(30):18083–18090. [PubMed] [Google Scholar]
  12. Ikemoto N., Ronjat M., Mészáros L. G., Koshita M. Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry. 1989 Aug 8;28(16):6764–6771. doi: 10.1021/bi00442a033. [DOI] [PubMed] [Google Scholar]
  13. Kawasaki T., Kasai M. Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1120–1127. doi: 10.1006/bbrc.1994.1347. [DOI] [PubMed] [Google Scholar]
  14. Lai F. A., Erickson H. P., Rousseau E., Liu Q. Y., Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature. 1988 Jan 28;331(6154):315–319. doi: 10.1038/331315a0. [DOI] [PubMed] [Google Scholar]
  15. Lai F. A., Meissner G. The muscle ryanodine receptor and its intrinsic Ca2+ channel activity. J Bioenerg Biomembr. 1989 Apr;21(2):227–246. doi: 10.1007/BF00812070. [DOI] [PubMed] [Google Scholar]
  16. Leberer E., Charuk J. H., Green N. M., MacLennan D. H. Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6047–6051. doi: 10.1073/pnas.86.16.6047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leberer E., Timms B. G., Campbell K. P., MacLennan D. H. Purification, calcium binding properties, and ultrastructural localization of the 53,000- and 160,000 (sarcalumenin)-dalton glycoproteins of the sarcoplasmic reticulum. J Biol Chem. 1990 Jun 15;265(17):10118–10124. [PubMed] [Google Scholar]
  18. Melzer W., Herrmann-Frank A., Lüttgau H. C. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta. 1995 May 8;1241(1):59–116. doi: 10.1016/0304-4157(94)00014-5. [DOI] [PubMed] [Google Scholar]
  19. Murray B. E., Ohlendieck K. Complex formation between calsequestrin and the ryanodine receptor in fast- and slow-twitch rabbit skeletal muscle. FEBS Lett. 1998 Jun 16;429(3):317–322. doi: 10.1016/s0014-5793(98)00621-8. [DOI] [PubMed] [Google Scholar]
  20. Orr I., Shoshan-Barmatz V. Modulation of the skeletal muscle ryanodine receptor by endogenous phosphorylation of 160/150-kDa proteins of the sarcoplasmic reticulum. Biochim Biophys Acta. 1996 Aug 14;1283(1):80–88. doi: 10.1016/0005-2736(96)00078-8. [DOI] [PubMed] [Google Scholar]
  21. Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shoshan-Barmatz V., Ashley R. H. The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int Rev Cytol. 1998;183:185–270. doi: 10.1016/s0074-7696(08)60145-x. [DOI] [PubMed] [Google Scholar]
  23. Shoshan-Barmatz V., Hadad N., Feng W., Shafir I., Orr I., Varsanyi M., Heilmeyer L. M. VDAC/porin is present in sarcoplasmic reticulum from skeletal muscle. FEBS Lett. 1996 May 20;386(2-3):205–210. doi: 10.1016/0014-5793(96)00442-5. [DOI] [PubMed] [Google Scholar]
  24. Shoshan-Barmatz V., Orr I., Weil S., Meyer H., Varsanyi M., Heilmeyer L. M. The identification of the phosphorylated 150/160-kDa proteins of sarcoplasmic reticulum, their kinase and their association with the ryanodine receptor. Biochim Biophys Acta. 1996 Aug 14;1283(1):89–100. doi: 10.1016/0005-2736(96)00079-x. [DOI] [PubMed] [Google Scholar]
  25. Smith J. S., Coronado R., Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature. 1985 Aug 1;316(6027):446–449. doi: 10.1038/316446a0. [DOI] [PubMed] [Google Scholar]
  26. Varsànyi M., Heilmeyer L. M., Jr Autocatalytic phosphorylation of calsequestrin. FEBS Lett. 1980 Dec 29;122(2):227–230. doi: 10.1016/0014-5793(80)80444-3. [DOI] [PubMed] [Google Scholar]
  27. Varsányi M., Meyer H. E. Sarcoplasmic reticular Ca2+ release channel is phosphorylated at serine 2843 in intact rabbit skeletal muscle. Biol Chem Hoppe Seyler. 1995 Jan;376(1):45–49. [PubMed] [Google Scholar]
  28. Yano K., Zarain-Herzberg A. Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol Cell Biochem. 1994 Jun 15;135(1):61–70. doi: 10.1007/BF00925961. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES