Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) is a liver-specific enzyme that converts phosphatidylethanolamine into phosphatidylcholine. At least two forms of PEMT are present in hepatocytes. However, PEMT activity is negligible in two hepatoma cell lines. Previous studies have indicated an inverse relationship between the expression of one form, PEMT2, and the rate of liver growth, suggesting that this enzyme might be involved in inhibition of hepatocyte proliferation. We have now investigated the expression of PEMT2 at various stages of hepatocarcinogenesis induced by chemical carcinogens. Expression of PEMT2 protein was decreased in liver samples that contained the first detectable proliferative lesions. At later stages of carcinogenesis, PEMT2 expression was obliterated. PEMT activity decreased, the levels of PEMT2 mRNA decreased and there was an increase in the activity of CTP:phosphocholine cytidylyltransferase, a key regulatory enzyme in the CDP-choline pathway of phosphatidylcholine biosynthesis. Southern blot analyses of restriction fragments of DNA showed no changes in the PEMT gene in hepatocarcinoma compared with normal liver. A role for PEMT2 in the control of hepatocyte proliferation remains an intriguing possibility.
Full Text
The Full Text of this article is available as a PDF (140.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buetow K. H., Murray J. C., Israel J. L., London W. T., Smith M., Kew M., Blanquet V., Brechot C., Redeker A., Govindarajah S. Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8852–8856. doi: 10.1073/pnas.86.22.8852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Challen C., Lunec J., Warren W., Collier J., Bassendine M. F. Analysis of the p53 tumor-suppressor gene in hepatocellular carcinomas from Britain. Hepatology. 1992 Dec;16(6):1362–1366. doi: 10.1002/hep.1840160610. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cui Z., Houweling M., Vance D. E. Suppression of rat hepatoma cell growth by expression of phosphatidylethanolamine N-methyltransferase-2. J Biol Chem. 1994 Oct 7;269(40):24531–24533. [PubMed] [Google Scholar]
- Cui Z., Shen Y. J., Vance D. E. Inverse correlation between expression of phosphatidylethanolamine N-methyltransferase-2 and growth rate of perinatal rat livers. Biochim Biophys Acta. 1997 May 17;1346(1):10–16. doi: 10.1016/s0005-2760(97)00012-x. [DOI] [PubMed] [Google Scholar]
- Cui Z., Vance J. E., Chen M. H., Voelker D. R., Vance D. E. Cloning and expression of a novel phosphatidylethanolamine N-methyltransferase. A specific biochemical and cytological marker for a unique membrane fraction in rat liver. J Biol Chem. 1993 Aug 5;268(22):16655–16663. [PubMed] [Google Scholar]
- Donehower L. A., Harvey M., Slagle B. L., McArthur M. J., Montgomery C. A., Jr, Butel J. S., Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992 Mar 19;356(6366):215–221. doi: 10.1038/356215a0. [DOI] [PubMed] [Google Scholar]
- EAGLE H. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med. 1955 Nov 1;102(5):595–600. doi: 10.1084/jem.102.5.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esko J. D., Wermuth M. M., Raetz C. R. Thermolabile CDP-choline synthetase in an animal cell mutant defective in lecithin formation. J Biol Chem. 1981 Jul 25;256(14):7388–7393. [PubMed] [Google Scholar]
- Farber E., Sarma D. S. Chemical carcinogenesis: the liver as a model. Pathol Immunopathol Res. 1986;5(1):1–28. doi: 10.1159/000157000. [DOI] [PubMed] [Google Scholar]
- Hosono S., Lee C. S., Chou M. J., Yang C. S., Shih C. H. Molecular analysis of the p53 alleles in primary hepatocellular carcinomas and cell lines. Oncogene. 1991 Feb;6(2):237–243. [PubMed] [Google Scholar]
- Houweling M., Cui Z., Tessitore L., Vance D. E. Induction of hepatocyte proliferation after partial hepatectomy is accompanied by a markedly reduced expression of phosphatidylethanolamine N-methyltransferase-2. Biochim Biophys Acta. 1997 May 17;1346(1):1–9. doi: 10.1016/s0005-2760(97)00011-8. [DOI] [PubMed] [Google Scholar]
- Houweling M., Cui Z., Vance D. E. Expression of phosphatidylethanolamine N-methyltransferase-2 cannot compensate for an impaired CDP-choline pathway in mutant Chinese hamster ovary cells. J Biol Chem. 1995 Jul 7;270(27):16277–16282. doi: 10.1074/jbc.270.27.16277. [DOI] [PubMed] [Google Scholar]
- Houweling M., Tijburg L. B., Jamil H., Vance D. E., Nyathi C. B., Vaartjes W. J., van Golde L. M. Phosphatidylcholine metabolism in rat liver after partial hepatectomy. Evidence for increased activity and amount of CTP:phosphocholine cytidylyltransferase. Biochem J. 1991 Sep 1;278(Pt 2):347–351. doi: 10.1042/bj2780347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houweling M., Tijburg L. B., Jamil H., Vance D. E., Nyathi C. B., Vaartjes W. J., van Golde L. M. Phosphatidylcholine metabolism in rat liver after partial hepatectomy. Evidence for increased activity and amount of CTP:phosphocholine cytidylyltransferase. Biochem J. 1991 Sep 1;278(Pt 2):347–351. doi: 10.1042/bj2780347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulla J. E., Chen Z. Y., Eaton D. L. Aflatoxin B1-induced rat hepatic hyperplastic nodules do not exhibit a site-specific mutation within the p53 gene. Cancer Res. 1993 Jan 1;53(1):9–11. [PubMed] [Google Scholar]
- Kent C. CTP:phosphocholine cytidylyltransferase. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):79–90. doi: 10.1016/s0005-2760(97)00112-4. [DOI] [PubMed] [Google Scholar]
- Kent C. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem. 1995;64:315–343. doi: 10.1146/annurev.bi.64.070195.001531. [DOI] [PubMed] [Google Scholar]
- Laurent-Puig P., Flejou J. F., Fabre M., Bedossa P., Belghiti J., Gayral F., Franco D. Overexpression of p53: a rare event in a large series of white patients with hepatocellular carcinoma. Hepatology. 1992 Nov;16(5):1171–1175. [PubMed] [Google Scholar]
- Lee J. M., Abrahamson J. L., Kandel R., Donehower L. A., Bernstein A. Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice. Oncogene. 1994 Dec;9(12):3731–3736. [PubMed] [Google Scholar]
- Ridgway N. D., Vance D. E. Phosphatidylethanolamine N-methyltransferase from rat liver. Methods Enzymol. 1992;209:366–374. doi: 10.1016/0076-6879(92)09045-5. [DOI] [PubMed] [Google Scholar]
- Ridgway N. D., Vance D. E. Purification of phosphatidylethanolamine N-methyltransferase from rat liver. J Biol Chem. 1987 Dec 15;262(35):17231–17239. [PubMed] [Google Scholar]
- Sesca E., Perletti G. P., Binasco V., Chiara M., Tessitore L. Phosphatidylethanolamine N-methyltransferase 2 and CTP-phosphocholine cytidylyltransferase expressions are related with protein kinase C isozymes in developmental liver growth. Biochem Biophys Res Commun. 1996 Dec 4;229(1):158–162. doi: 10.1006/bbrc.1996.1773. [DOI] [PubMed] [Google Scholar]
- Smith M. L., Yeleswarapu L., Scalamogna P., Locker J., Lombardi B. p53 mutations in hepatocellular carcinomas induced by a choline-devoid diet in male Fischer 344 rats. Carcinogenesis. 1993 Mar;14(3):503–510. doi: 10.1093/carcin/14.3.503. [DOI] [PubMed] [Google Scholar]
- Solt D. B., Cayama E., Tsuda H., Enomoto K., Lee G., Farber E. Promotion of liver cancer development by brief exposure to dietary 2-acetylaminofluorene plus partial hepatectomy or carbon tetrachloride. Cancer Res. 1983 Jan;43(1):188–191. [PubMed] [Google Scholar]
- Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975 May 10;250(9):3359–3367. [PubMed] [Google Scholar]
- Tessitore L., Cui Z., Vance D. E. Transient inactivation of phosphatidylethanolamine N-methyltransferase-2 and activation of cytidine triphosphate: phosphocholine cytidylyltransferase during non-neoplastic liver growth. Biochem J. 1997 Feb 15;322(Pt 1):151–154. doi: 10.1042/bj3220151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tessner T. G., Rock C. O., Kalmar G. B., Cornell R. B., Jackowski S. Colony-stimulating factor 1 regulates CTP: phosphocholine cytidylyltransferase mRNA levels. J Biol Chem. 1991 Sep 5;266(25):16261–16264. [PubMed] [Google Scholar]
- Ueda H., Ullrich S. J., Gangemi J. D., Kappel C. A., Ngo L., Feitelson M. A., Jay G. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet. 1995 Jan;9(1):41–47. doi: 10.1038/ng0195-41. [DOI] [PubMed] [Google Scholar]
- Vance D. E., Pelech S. D., Choy P. C. CTP: phosphocholine cytidylyltransferase from rat liver. Methods Enzymol. 1981;71(Pt 100):576–581. doi: 10.1016/0076-6879(81)71070-x. [DOI] [PubMed] [Google Scholar]
- Walkey C. J., Cui Z., Agellon L. B., Vance D. E. Characterization of the murine phosphatidylethanolamine N-methyltransferase-2 gene. J Lipid Res. 1996 Nov;37(11):2341–2350. [PubMed] [Google Scholar]
- Walkey C. J., Donohue L. R., Bronson R., Agellon L. B., Vance D. E. Disruption of the murine gene encoding phosphatidylethanolamine N-methyltransferase. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12880–12885. doi: 10.1073/pnas.94.24.12880. [DOI] [PMC free article] [PubMed] [Google Scholar]