Abstract
Microsomal epoxide hydrolase (mEH) belongs to the superfamily of alpha/beta-hydrolase fold enzymes. A catalytic triad in the active centre of the enzyme hydrolyses the substrate molecules in a two-step reaction via the intermediate formation of an enzyme-substrate ester. Here we show that the mEH catalytic triad is composed of Asp226, Glu404 and His431. Replacing either of these residues with non-functional amino acids results in a complete loss of activity of the enzyme recombinantly expressed in Saccharomyces cerevisiae. For Glu404 and His431 mutants, their structural integrity was demonstrated by their retained ability to form the substrate ester intermediate, indicating that the lack of enzymic activity is due to an indispensable function of either residue in the hydrolytic step of the enzymic reaction. The role of Asp226 as the catalytic nucleophile driving the formation of the ester intermediate was substantiated by the isolation of a peptide fraction carrying the 14C-labelled substrate after cleavage of the ester intermediate with cyanogen bromide. Sequence analysis revealed that one of the two peptides within this sample harboured Asp226. Surprisingly, the replacement of Glu404 with Asp greatly increased the Vmax of the enzyme with styrene 7,8-oxide (23-fold) and 9, 10-epoxystearic acid (39-fold). The increase in Vmax was paralleled by an increase in Km with both substrates, in line with a selective enhancement of the second, rate-limiting step of the enzymic reaction. Owing to its enhanced catalytic properties, the Glu404-->Asp mutant might represent a versatile tool for the enantioselective bio-organic synthesis of chiral fine chemicals. The question of why all native mEHs analysed so far have a Glu in place of the acidic charge relay residue is discussed.
Full Text
The Full Text of this article is available as a PDF (166.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arand M., Grant D. F., Beetham J. K., Friedberg T., Oesch F., Hammock B. D. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis. FEBS Lett. 1994 Feb 7;338(3):251–256. doi: 10.1016/0014-5793(94)80278-5. [DOI] [PubMed] [Google Scholar]
- Arand M., Wagner H., Oesch F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. J Biol Chem. 1996 Feb 23;271(8):4223–4229. doi: 10.1074/jbc.271.8.4223. [DOI] [PubMed] [Google Scholar]
- Archelas A., Furstoss R. Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol. 1997;51:491–525. doi: 10.1146/annurev.micro.51.1.491. [DOI] [PubMed] [Google Scholar]
- Beetham J. K., Grant D., Arand M., Garbarino J., Kiyosue T., Pinot F., Oesch F., Belknap W. R., Shinozaki K., Hammock B. D. Gene evolution of epoxide hydrolases and recommended nomenclature. DNA Cell Biol. 1995 Jan;14(1):61–71. doi: 10.1089/dna.1995.14.61. [DOI] [PubMed] [Google Scholar]
- Bell P. A., Kasper C. B. Expression of rat microsomal epoxide hydrolase in Escherichia coli. Identification of a histidyl residue essential for catalysis. J Biol Chem. 1993 Jul 5;268(19):14011–14017. [PubMed] [Google Scholar]
- Bentley P., Oesch F. Purification of rat liver epoxide hydratase to apparent homogeneity. FEBS Lett. 1975 Nov 15;59(2):291–295. doi: 10.1016/0014-5793(75)80395-4. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- DuBois G. C., Appella E., Levin W., Lu A. Y., Jerina D. M. Hepatic microsomal epoxide hydrase. Involvement of a histidine at the active site suggests a nucleophilic mechanism. J Biol Chem. 1978 May 10;253(9):2932–2939. [PubMed] [Google Scholar]
- Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammock B. D., Pinot F., Beetham J. K., Grant D. F., Arand M. E., Oesch F. Isolation of a putative hydroxyacyl enzyme intermediate of an epoxide hydrolase. Biochem Biophys Res Commun. 1994 Feb 15;198(3):850–856. doi: 10.1006/bbrc.1994.1121. [DOI] [PubMed] [Google Scholar]
- Herrero M. E., Arand M., Hengstler J. G., Oesch F. Recombinant expression of human microsomal epoxide hydrolase protects V79 Chinese hamster cells from styrene oxide- but not from ethylene oxide-induced DNA strand breaks. Environ Mol Mutagen. 1997;30(4):429–439. doi: 10.1002/(sici)1098-2280(1997)30:4<429::aid-em8>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Janssen D. B., Pries F., van der Ploeg J., Kazemier B., Terpstra P., Witholt B. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J Bacteriol. 1989 Dec;171(12):6791–6799. doi: 10.1128/jb.171.12.6791-6799.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson W. W., Yamazaki H., Shimada T., Ueng Y. F., Guengerich F. P. Aflatoxin B1 8,9-epoxide hydrolysis in the presence of rat and human epoxide hydrolase. Chem Res Toxicol. 1997 Jun;10(6):672–676. doi: 10.1021/tx960209j. [DOI] [PubMed] [Google Scholar]
- Lacourciere G. M., Armstrong R. N. Microsomal and soluble epoxide hydrolases are members of the same family of C-X bond hydrolase enzymes. Chem Res Toxicol. 1994 Mar-Apr;7(2):121–124. doi: 10.1021/tx00038a001. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laughlin L. T., Tzeng H. F., Lin S., Armstrong R. N. Mechanism of microsomal epoxide hydrolase. Semifunctional site-specific mutants affecting the alkylation half-reaction. Biochemistry. 1998 Mar 3;37(9):2897–2904. doi: 10.1021/bi972737f. [DOI] [PubMed] [Google Scholar]
- Moghaddam M. F., Grant D. F., Cheek J. M., Greene J. F., Williamson K. C., Hammock B. D. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med. 1997 May;3(5):562–566. doi: 10.1038/nm0597-562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller F., Arand M., Frank H., Seidel A., Hinz W., Winkler L., Hänel K., Blée E., Beetham J. K., Hammock B. D. Visualization of a covalent intermediate between microsomal epoxide hydrolase, but not cholesterol epoxide hydrolase, and their substrates. Eur J Biochem. 1997 Apr 15;245(2):490–496. doi: 10.1111/j.1432-1033.1997.00490.x. [DOI] [PubMed] [Google Scholar]
- Oesch F. Mammalian epoxide hydrases: inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica. 1973 May;3(5):305–340. doi: 10.3109/00498257309151525. [DOI] [PubMed] [Google Scholar]
- Oesch F. Purification and specificity of a human microsomal epoxide hydratase. Biochem J. 1974 Apr;139(1):77–88. doi: 10.1042/bj1390077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
- Pinot F., Grant D. F., Beetham J. K., Parker A. G., Borhan B., Landt S., Jones A. D., Hammock B. D. Molecular and biochemical evidence for the involvement of the Asp-333-His-523 pair in the catalytic mechanism of soluble epoxide hydrolase. J Biol Chem. 1995 Apr 7;270(14):7968–7974. doi: 10.1074/jbc.270.14.7968. [DOI] [PubMed] [Google Scholar]
- Porter T. D., Beck T. W., Kasper C. B. Complementary DNA and amino acid sequence of rat liver microsomal, xenobiotic epoxide hydrolase. Arch Biochem Biophys. 1986 Jul;248(1):121–129. doi: 10.1016/0003-9861(86)90408-x. [DOI] [PubMed] [Google Scholar]
- Rink R., Fennema M., Smids M., Dehmel U., Janssen D. B. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J Biol Chem. 1997 Jun 6;272(23):14650–14657. doi: 10.1074/jbc.272.23.14650. [DOI] [PubMed] [Google Scholar]
- Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schladt L., Wörner W., Setiabudi F., Oesch F. Distribution and inducibility of cytosolic epoxide hydrolase in male Sprague-Dawley rats. Biochem Pharmacol. 1986 Oct 1;35(19):3309–3316. doi: 10.1016/0006-2952(86)90428-4. [DOI] [PubMed] [Google Scholar]
- Tomic M., Sunjevaric I., Savtchenko E. S., Blumenberg M. A rapid and simple method for introducing specific mutations into any position of DNA leaving all other positions unaltered. Nucleic Acids Res. 1990 Mar 25;18(6):1656–1656. doi: 10.1093/nar/18.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tzeng H. F., Laughlin L. T., Armstrong R. N. Semifunctional site-specific mutants affecting the hydrolytic half-reaction of microsomal epoxide hydrolase. Biochemistry. 1998 Mar 3;37(9):2905–2911. doi: 10.1021/bi9727388. [DOI] [PubMed] [Google Scholar]
- Urban P., Werck-Reichhart D., Teutsch H. G., Durst F., Regnier S., Kazmaier M., Pompon D. Characterization of recombinant plant cinnamate 4-hydroxylase produced in yeast. Kinetic and spectral properties of the major plant P450 of the phenylpropanoid pathway. Eur J Biochem. 1994 Jun 15;222(3):843–850. doi: 10.1111/j.1432-1033.1994.tb18931.x. [DOI] [PubMed] [Google Scholar]
- Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]