Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jan 1;337(Pt 1):51–57.

Insulin-sensitive regulation of glucose transport and GLUT4 translocation in skeletal muscle of GLUT1 transgenic mice.

G J Etgen Jr 1, W J Zavadoski 1, G D Holman 1, E M Gibbs 1
PMCID: PMC1219935  PMID: 9854024

Abstract

Skeletal muscle glucose transport was examined in transgenic mice overexpressing the glucose transporter GLUT1 using both the isolated incubated-muscle preparation and the hind-limb perfusion technique. In the absence of insulin, 2-deoxy-d-glucose uptake was increased approximately 3-8-fold in isolated fast-twitch muscles of GLUT1 transgenic mice compared with non-transgenic siblings. Similarly, basal glucose transport activity was increased approximately 4-14-fold in perfused fast-twitch muscles of transgenic mice. In non-transgenic mice insulin accelerated glucose transport activity approximately 2-3-fold in isolated muscles and to a much greater extent ( approximately 7-20-fold) in perfused hind-limb preparations. The observed effect of insulin on glucose transport in transgenic muscle was similarly dependent upon the technique used for measurement, as insulin had no effect on isolated fast-twitch muscle from transgenic mice, but significantly enhanced glucose transport in perfused fast-twitch muscle from transgenic mice to approximately 50-75% of the magnitude of the increase observed in non-transgenic mice. Cell-surface glucose transporter content was assessed via 2-N-4-(l-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(d -mannos-4-yloxy)-2-propylamine photolabelling methodology in both isolated and perfused extensor digitorum longus (EDL). Cell-surface GLUT1 was enhanced by as much as 70-fold in both isolated and perfused EDL of transgenic mice. Insulin did not alter cell-surface GLUT1 in either transgenic or non-transgenic mice. Basal levels of cell-surface GLUT4, measured in either isolated or perfused EDL, were similar in transgenic and non-transgenic mice. Interestingly, insulin enhanced cell-surface GLUT4 approximately 2-fold in isolated EDL and approximately 6-fold in perfused EDL of both transgenic and non-transgenic mice. In summary, these results reveal differences between isolated muscle and perfused hind-limb techniques, with the latter method showing a more robust responsiveness to insulin. Furthermore, the results demonstrate that muscle overexpressing GLUT1 has normal insulin-induced GLUT4 translocation and the ability to augment glucose-transport activity above the elevated basal rates.

Full Text

The Full Text of this article is available as a PDF (132.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonen A., Clark M. G., Henriksen E. J. Experimental approaches in muscle metabolism: hindlimb perfusion and isolated muscle incubations. Am J Physiol. 1994 Jan;266(1 Pt 1):E1–16. doi: 10.1152/ajpendo.1994.266.1.E1. [DOI] [PubMed] [Google Scholar]
  2. Brant A. M., McCoid S., Thomas H. M., Baldwin S. A., Davies A., Parker J. C., Gibbs E. M., Gould G. W. Analysis of the glucose transporter content of islet cell lines: implications for glucose-stimulated insulin release. Cell Signal. 1992 Nov;4(6):641–650. doi: 10.1016/0898-6568(92)90045-a. [DOI] [PubMed] [Google Scholar]
  3. Brozinick J. T., Jr, Yaspelkis B. B., 3rd, Wilson C. M., Grant K. E., Gibbs E. M., Cushman S. W., Ivy J. L. Glucose transport and GLUT4 protein distribution in skeletal muscle of GLUT4 transgenic mice. Biochem J. 1996 Jan 1;313(Pt 1):133–140. doi: 10.1042/bj3130133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buse M. G., Robinson K. A., Marshall B. A., Mueckler M. Differential effects of GLUT1 or GLUT4 overexpression on hexosamine biosynthesis by muscles of transgenic mice. J Biol Chem. 1996 Sep 20;271(38):23197–23202. doi: 10.1074/jbc.271.38.23197. [DOI] [PubMed] [Google Scholar]
  5. Clark A. E., Holman G. D. Exofacial photolabelling of the human erythrocyte glucose transporter with an azitrifluoroethylbenzoyl-substituted bismannose. Biochem J. 1990 Aug 1;269(3):615–622. doi: 10.1042/bj2690615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Etgen G. J., Jr, Wilson C. M., Jensen J., Cushman S. W., Ivy J. L. Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat. Am J Physiol. 1996 Aug;271(2 Pt 1):E294–E301. doi: 10.1152/ajpendo.1996.271.2.E294. [DOI] [PubMed] [Google Scholar]
  7. Garvey W. T., Olefsky J. M., Matthaei S., Marshall S. Glucose and insulin co-regulate the glucose transport system in primary cultured adipocytes. A new mechanism of insulin resistance. J Biol Chem. 1987 Jan 5;262(1):189–197. [PubMed] [Google Scholar]
  8. Gibbs E. M., Stock J. L., McCoid S. C., Stukenbrok H. A., Pessin J. E., Stevenson R. W., Milici A. J., McNeish J. D. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Invest. 1995 Apr;95(4):1512–1518. doi: 10.1172/JCI117823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gulve E. A., Ren J. M., Marshall B. A., Gao J., Hansen P. A., Holloszy J. O., Mueckler M. Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUT1. Increased basal transport is associated with a defective response to diverse stimuli that activate GLUT4. J Biol Chem. 1994 Jul 15;269(28):18366–18370. [PubMed] [Google Scholar]
  10. Liu M. L., Gibbs E. M., McCoid S. C., Milici A. J., Stukenbrok H. A., McPherson R. K., Treadway J. L., Pessin J. E. Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11346–11350. doi: 10.1073/pnas.90.23.11346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lund S., Flyvbjerg A., Holman G. D., Larsen F. S., Pedersen O., Schmitz O. Comparative effects of IGF-I and insulin on the glucose transporter system in rat muscle. Am J Physiol. 1994 Sep;267(3 Pt 1):E461–E466. doi: 10.1152/ajpendo.1994.267.3.E461. [DOI] [PubMed] [Google Scholar]
  12. Lund S., Holman G. D., Schmitz O., Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5817–5821. doi: 10.1073/pnas.92.13.5817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lund S., Holman G. D., Schmitz O., Pedersen O. Glut 4 content in the plasma membrane of rat skeletal muscle: comparative studies of the subcellular fractionation method and the exofacial photolabelling technique using ATB-BMPA. FEBS Lett. 1993 Sep 20;330(3):312–318. doi: 10.1016/0014-5793(93)80895-2. [DOI] [PubMed] [Google Scholar]
  14. Marshall B. A., Mueckler M. M. Differential effects of GLUT-1 or GLUT-4 overexpression on insulin responsiveness in transgenic mice. Am J Physiol. 1994 Nov;267(5 Pt 1):E738–E744. doi: 10.1152/ajpendo.1994.267.5.E738. [DOI] [PubMed] [Google Scholar]
  15. Marshall B. A., Ren J. M., Johnson D. W., Gibbs E. M., Lillquist J. S., Soeller W. C., Holloszy J. O., Mueckler M. Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. J Biol Chem. 1993 Sep 5;268(25):18442–18445. [PubMed] [Google Scholar]
  16. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
  17. Palfreyman R. W., Clark A. E., Denton R. M., Holman G. D., Kozka I. J. Kinetic resolution of the separate GLUT1 and GLUT4 glucose transport activities in 3T3-L1 cells. Biochem J. 1992 May 15;284(Pt 1):275–282. doi: 10.1042/bj2840275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ren J. M., Marshall B. A., Gulve E. A., Gao J., Johnson D. W., Holloszy J. O., Mueckler M. Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem. 1993 Aug 5;268(22):16113–16115. [PubMed] [Google Scholar]
  19. Ren J. M., Marshall B. A., Gulve E. A., Gao J., Johnson D. W., Holloszy J. O., Mueckler M. Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem. 1993 Aug 5;268(22):16113–16115. [PubMed] [Google Scholar]
  20. Robinson K. A., Sens D. A., Buse M. G. Pre-exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Study of mechanisms in muscle and in rat-1 fibroblasts overexpressing the human insulin receptor. Diabetes. 1993 Sep;42(9):1333–1346. doi: 10.2337/diab.42.9.1333. [DOI] [PubMed] [Google Scholar]
  21. Ruderman N. B., Houghton C. R., Hems R. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J. 1971 Sep;124(3):639–651. doi: 10.1042/bj1240639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Späth P. J., Koblet H. Properties of SDS-polyacrylamide gels highly cross-linked with N,N'-diallyltartardiamide and the rapid isolation of macromolecules from the gel matrix. Anal Biochem. 1979 Mar;93(2):275–285. doi: 10.1016/s0003-2697(79)80152-9. [DOI] [PubMed] [Google Scholar]
  23. Treadway J. L., Hargrove D. M., Nardone N. A., McPherson R. K., Russo J. F., Milici A. J., Stukenbrok H. A., Gibbs E. M., Stevenson R. W., Pessin J. E. Enhanced peripheral glucose utilization in transgenic mice expressing the human GLUT4 gene. J Biol Chem. 1994 Nov 25;269(47):29956–29961. [PubMed] [Google Scholar]
  24. Wilson C. M., Cushman S. W. Insulin stimulation of glucose transport activity in rat skeletal muscle: increase in cell surface GLUT4 as assessed by photolabelling. Biochem J. 1994 May 1;299(Pt 3):755–759. doi: 10.1042/bj2990755. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES