Abstract
We have isolated and characterized a cDNA and partial gene encoding a murine subfamily 1 Theta class glutathione transferase (GST). The cDNA derived from mouse GSTT1 has an open reading frame of 720 bp encoding a peptide of 240 amino acids with a calculated molecular mass of 27356 Da. The encoded protein shares only 51% deduced amino acid sequence identity with mouse GSTT2, but greater than 80% deduced amino acid sequence identity with rat GSTT1 and human GSTT1. Mouse GSTT1-1 was expressed in Escherichia coli as an N-terminal 6x histidine-tagged protein and purified using immobilized-metal affinity chromatography on nickel-agarose. The yield of the purified recombinant protein from E. coli cultures was approx. 14 mg/l. Recombinant mouse GSTT1-1 was catalytically active towards 1, 2-epoxy-3-(p-nitrophenoxy)propane, 4-nitrobenzyl chloride and dichloromethane. Low activity towards 1-menaphthyl sulphate and 1-chloro-2,4-dinitrobenzene was detected, whereas mouse GSTT1-1 was inactive towards ethacrynic acid. Recombinant mouse GSTT1-1 exhibited glutathione peroxidase activity towards cumene hydroperoxide and t-butyl hydroperoxide, but was inactive towards a range of secondary lipid-peroxidation products, such as the trans-alk-2-enals and trans,trans-alka-2,4-dienals. Mouse GSTT1 mRNA is most abundant in mouse liver and kidney, with some expression in intestinal mucosa. Mouse GSTT1 mRNA is induced in liver by phenobarbital, but not by butylated hydroxyanisole, beta-napthoflavone or isosafrole. The structure of mouse GSTT1 is conserved with that of the subfamily 2 Theta class GST genes mouse GSTT2 and rat GSTT2, comprising five exons interrupted by four introns. The mouse GSTT1 gene was found, by in situ hybridization, to be clustered with mouse GSTT2 on chromosome 10 at bands B5-C1. This region is syntenic with the location of the human Theta class GSTs clustered on chromosome 22q11.2. Similarity searches of a mouse-expressed sequence tag database suggest that there may be two additional members of the Theta class that share 70% and 88% protein sequence identity with mouse GSTT1, but less than 55% sequence identity with mouse GSTT2.
Full Text
The Full Text of this article is available as a PDF (304.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed A. E., Anders M. W. Metabolism of dihalomethanes to formaldehyde and inorganic halide. I. In vitro studies. Drug Metab Dispos. 1976 Jul-Aug;4(4):357–361. [PubMed] [Google Scholar]
- Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
- Board P. G., Baker R. T., Chelvanayagam G., Jermiin L. S. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J. 1997 Dec 15;328(Pt 3):929–935. doi: 10.1042/bj3280929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Board P. G., Coggan M., Wilce M. C., Parker M. W. Evidence for an essential serine residue in the active site of the Theta class glutathione transferases. Biochem J. 1995 Oct 1;311(Pt 1):247–250. doi: 10.1042/bj3110247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brophy P. M., Southan C., Barrett J. Glutathione transferases in the tapeworm Moniezia expansa. Biochem J. 1989 Sep 15;262(3):939–946. doi: 10.1042/bj2620939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cahilly-Snyder L., Yang-Feng T., Francke U., George D. L. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet. 1987 May;13(3):235–244. doi: 10.1007/BF01535205. [DOI] [PubMed] [Google Scholar]
- Chelvanayagam G., Wilce M. C., Parker M. W., Tan K. L., Board P. G. Homology model for the human GSTT2 Theta class glutathione transferase. Proteins. 1997 Jan;27(1):118–130. doi: 10.1002/(sici)1097-0134(199701)27:1<118::aid-prot12>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Clapp J. J., Young L. Formation of mercapturic acids in rats after the administration of aralkyl esters. Biochem J. 1970 Aug;118(5):765–771. doi: 10.1042/bj1180765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coggan M., Whitbread L., Whittington A., Board P. Structure and organization of the human theta-class glutathione S-transferase and D-dopachrome tautomerase gene complex. Biochem J. 1998 Sep 15;334(Pt 3):617–623. doi: 10.1042/bj3340617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillham B. The mechanism of the reaction between glutathione and 1-menaphthyl sulphate catalysed by a glutathione S-transferase from rat liver. Biochem J. 1973 Dec;135(4):797–804. doi: 10.1042/bj1350797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
- Hiratsuka A., Kanazawa M., Nishiyama T., Okuda H., Ogura K., Watabe T. A subfamily 2 homo-dimeric glutathione S-transferase mYrs-mYrs of class theta in mouse liver cytosol. Biochem Biophys Res Commun. 1995 Jul 26;212(3):743–750. doi: 10.1006/bbrc.1995.2032. [DOI] [PubMed] [Google Scholar]
- Hiratsuka A., Okada T., Nishiyama T., Fujikawa M., Ogura K., Okuda H., Watabe T., Watabe T. Novel theta class glutathione S-transferases Yrs-Yrs' and Yrs'-Yrs' in rat liver cytosol: their potent activity toward 5-sulfoxymethylchrysene, a reactive metabolite of the carcinogen 5-hydroxymethylchrysene. Biochem Biophys Res Commun. 1994 Jul 15;202(1):278–284. doi: 10.1006/bbrc.1994.1924. [DOI] [PubMed] [Google Scholar]
- Hiratsuka A., Sebata N., Kawashima K., Okuda H., Ogura K., Watabe T., Satoh K., Hatayama I., Tsuchida S., Ishikawa T. A new class of rat glutathione S-transferase Yrs-Yrs inactivating reactive sulfate esters as metabolites of carcinogenic arylmethanols. J Biol Chem. 1990 Jul 15;265(20):11973–11981. [PubMed] [Google Scholar]
- Hussey A. J., Hayes J. D. Characterization of a human class-Theta glutathione S-transferase with activity towards 1-menaphthyl sulphate. Biochem J. 1992 Sep 15;286(Pt 3):929–935. doi: 10.1042/bj2860929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jemth P., Stenberg G., Chaga G., Mannervik B. Heterologous expression, purification and characterization of rat class theta glutathione transferase T2-2. Biochem J. 1996 May 15;316(Pt 1):131–136. doi: 10.1042/bj3160131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Justice M. J., Siracusa L. D., Gilbert D. J., Heisterkamp N., Groffen J., Chada K., Silan C. M., Copeland N. G., Jenkins N. A. A genetic linkage map of mouse chromosome 10: localization of eighteen molecular markers using a single interspecific backcross. Genetics. 1990 Aug;125(4):855–866. doi: 10.1093/genetics/125.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lawrence R. A., Burk R. F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976 Aug 23;71(4):952–958. doi: 10.1016/0006-291x(76)90747-6. [DOI] [PubMed] [Google Scholar]
- Mainwaring G. W., Nash J., Davidson M., Green T. Isolation of a mouse theta glutathione S-transferase active with methylene chloride. Biochem J. 1996 Mar 1;314(Pt 2):445–448. doi: 10.1042/bj3140445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mainwaring G. W., Williams S. M., Foster J. R., Tugwood J., Green T. The distribution of theta-class glutathione S-transferases in the liver and lung of mouse, rat and human. Biochem J. 1996 Aug 15;318(Pt 1):297–303. doi: 10.1042/bj3180297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannervik B., Awasthi Y. C., Board P. G., Hayes J. D., Di Ilio C., Ketterer B., Listowsky I., Morgenstern R., Muramatsu M., Pearson W. R. Nomenclature for human glutathione transferases. Biochem J. 1992 Feb 15;282(Pt 1):305–306. doi: 10.1042/bj2820305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer D. J., Thomas M. Characterization of rat spleen prostaglandin H D-isomerase as a sigma-class GSH transferase. Biochem J. 1995 Nov 1;311(Pt 3):739–742. doi: 10.1042/bj3110739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogura K., Nishiyama T., Hiratsuka A., Watabe T., Watabe T. Isolation and characterization of the gene encoding rat class theta glutathione S-transferase subunit yrs. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1250–1256. doi: 10.1006/bbrc.1994.2799. [DOI] [PubMed] [Google Scholar]
- Ogura K., Nishiyama T., Okada T., Kajital J., Narihata H., Watabe T., Hiratsuka A., Watabe T. Molecular cloning and amino acid sequencing of rat liver class theta glutathione S-transferase Yrs-Yrs inactivating reactive sulfate esters of carcinogenic arylmethanols. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1294–1300. doi: 10.1016/0006-291x(91)92079-y. [DOI] [PubMed] [Google Scholar]
- Page D. C., Disteche C. M., Simpson E. M., de la Chapelle A., Andersson M., Alitalo T., Brown L. G., Green P., Akots G. Chromosomal localization of ZFX--a human gene that escapes X inactivation--and its murine homologs. Genomics. 1990 May;7(1):37–46. doi: 10.1016/0888-7543(90)90516-w. [DOI] [PubMed] [Google Scholar]
- Pearson W. R., Reinhart J., Sisk S. C., Anderson K. S., Adler P. N. Tissue-specific induction of murine glutathione transferase mRNAs by butylated hydroxyanisole. J Biol Chem. 1988 Sep 15;263(26):13324–13332. [PubMed] [Google Scholar]
- Pearson W. R., Vorachek W. R., Xu S. J., Berger R., Hart I., Vannais D., Patterson D. Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Am J Hum Genet. 1993 Jul;53(1):220–233. [PMC free article] [PubMed] [Google Scholar]
- Pearson W. R., Wood T., Zhang Z., Miller W. Comparison of DNA sequences with protein sequences. Genomics. 1997 Nov 15;46(1):24–36. doi: 10.1006/geno.1997.4995. [DOI] [PubMed] [Google Scholar]
- Pemble S. E., Taylor J. B. An evolutionary perspective on glutathione transferases inferred from class-theta glutathione transferase cDNA sequences. Biochem J. 1992 Nov 1;287(Pt 3):957–963. doi: 10.1042/bj2870957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pemble S., Schroeder K. R., Spencer S. R., Meyer D. J., Hallier E., Bolt H. M., Ketterer B., Taylor J. B. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994 May 15;300(Pt 1):271–276. doi: 10.1042/bj3000271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ricci G., Caccuri A. M., Lo Bello M., Pastore A., Piemonte F., Federici G. Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem. 1994 May 1;218(2):463–465. doi: 10.1006/abio.1994.1209. [DOI] [PubMed] [Google Scholar]
- Rossjohn J., McKinstry W. J., Oakley A. J., Verger D., Flanagan J., Chelvanayagam G., Tan K. L., Board P. G., Parker M. W. Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure. 1998 Mar 15;6(3):309–322. doi: 10.1016/s0969-2126(98)00034-3. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherratt P. J., Pulford D. J., Harrison D. J., Green T., Hayes J. D. Evidence that human class Theta glutathione S-transferase T1-1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse. Comparison of the tissue distribution of GST T1-1 with that of classes Alpha, Mu and Pi GST in human. Biochem J. 1997 Sep 15;326(Pt 3):837–846. doi: 10.1042/bj3260837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sisk S. C., Pearson W. R. Differences in induction by xenobiotics in murine tissues and the Hepa1c1c7 cell line of mRNAs encoding glutathione transferase, quinone reductase, and CYP1A P450s. Pharmacogenetics. 1993 Aug;3(4):167–181. doi: 10.1097/00008571-199308000-00001. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Tan K. L., Board P. G. Purification and characterization of a recombinant human Theta-class glutathione transferase (GSTT2-2). Biochem J. 1996 May 1;315(Pt 3):727–732. doi: 10.1042/bj3150727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan K. L., Chelvanayagam G., Parker M. W., Board P. G. Mutagenesis of the active site of the human Theta-class glutathione transferase GSTT2-2: catalysis with different substrates involves different residues. Biochem J. 1996 Oct 1;319(Pt 1):315–321. doi: 10.1042/bj3190315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan K. L., Webb G. C., Baker R. T., Board P. G. Molecular cloning of a cDNA and chromosomal localization of a human theta-class glutathione S-transferase gene (GSTT2) to chromosome 22. Genomics. 1995 Jan 20;25(2):381–387. doi: 10.1016/0888-7543(95)80037-m. [DOI] [PubMed] [Google Scholar]
- Taylor B. A., Burmeister M., Bryda E. C. Mouse chromosome 10. Mamm Genome. 1994;5(Spec No):S154–S163. [PubMed] [Google Scholar]
- Taylor J. B., Oliver J., Sherrington R., Pemble S. E. Structure of human glutathione S-transferase class Mu genes. Biochem J. 1991 Mar 1;274(Pt 2):587–593. doi: 10.1042/bj2740587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb G. C., Lee J. S., Campbell H. D., Young I. G. The genes for interleukins 3 and 5 map to the same locus on mouse chromosome 11. Cytogenet Cell Genet. 1989;50(2-3):107–110. doi: 10.1159/000132734. [DOI] [PubMed] [Google Scholar]
- Webb G., Vaska V., Coggan M., Board P. Chromosomal localization of the gene for the human theta class glutathione transferase (GSTT1). Genomics. 1996 Apr 1;33(1):121–123. doi: 10.1006/geno.1996.0167. [DOI] [PubMed] [Google Scholar]
- Whittington A. T., Webb G. C., Baker R. T., Board P. G. Characterization of a cDNA and gene encoding the mouse theta class glutathione transferase mGSTT2 and its localization to chromosome 10B5-C1. Genomics. 1996 Apr 1;33(1):105–111. doi: 10.1006/geno.1996.0165. [DOI] [PubMed] [Google Scholar]
- Wilce M. C., Board P. G., Feil S. C., Parker M. W. Crystal structure of a theta-class glutathione transferase. EMBO J. 1995 May 15;14(10):2133–2143. doi: 10.1002/j.1460-2075.1995.tb07207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkie T. M., Gilbert D. J., Olsen A. S., Chen X. N., Amatruda T. T., Korenberg J. R., Trask B. J., de Jong P., Reed R. R., Simon M. I. Evolution of the mammalian G protein alpha subunit multigene family. Nat Genet. 1992 May;1(2):85–91. doi: 10.1038/ng0592-85. [DOI] [PubMed] [Google Scholar]