Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jan 15;337(Pt 2):253–262.

Co-operation between the PAI and RED subdomains of Pax-8 in the interaction with the thyroglobulin promoter.

L Pellizzari 1, G Tell 1, G Damante 1
PMCID: PMC1219959  PMID: 9882622

Abstract

Pax proteins are transcription factors that play an important role in the differentiation of several cell types. These proteins bind to specific DNA sequences through the paired domain. This evolutionarily conserved element is composed of two subdomains (PAI and RED), located at the N- and C-terminals, respectively. Due to the presence of these two subdomains, Pax proteins may recognize DNA in different modes, a possibility that has not been exhaustively explored yet. The C site of the thyroglobulin promoter is bound by the thyroid-specific transcription factor Pax-8. In this study we have characterized the mode by which the Pax-8 paired domain interacts with the C site. Results allow the identification of the respective positions of the PAI and RED subdomains when the full-length protein is bound to the C site. The binding of the isolated PAI and RED subdomains to the C site and to several related mutants was also evaluated. Both subdomains interact with DNA as a monomer and display a lower binding affinity than the full-length protein. Therefore, the Pax-8 paired domain-C site interaction occurs through a co-operation between the two subdomains. The binding properties of the PAI subdomain suggest that the co-operation between PAI and RED subdomains does not merely consist of the sum of contacts established by the single subdomain: the presence of the RED subdomain is necessary for correct DNA recognition by the PAI subdomain, thus accounting for a sort of chronology of events during DNA binding. Since the RED subdomain is much more variable than the PAI subdomain among Pax proteins, these results could explain how distinct Pax proteins may select different target genes.

Full Text

The Full Text of this article is available as a PDF (261.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bopp D., Burri M., Baumgartner S., Frigerio G., Noll M. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell. 1986 Dec 26;47(6):1033–1040. doi: 10.1016/0092-8674(86)90818-4. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  4. Czerny T., Schaffner G., Busslinger M. DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 1993 Oct;7(10):2048–2061. doi: 10.1101/gad.7.10.2048. [DOI] [PubMed] [Google Scholar]
  5. Damante G., Di Lauro R. Thyroid-specific gene expression. Biochim Biophys Acta. 1994 Aug 2;1218(3):255–266. doi: 10.1016/0167-4781(94)90176-7. [DOI] [PubMed] [Google Scholar]
  6. Damante G., Fabbro D., Pellizzari L., Civitareale D., Guazzi S., Polycarpou-Schwartz M., Cauci S., Quadrifoglio F., Formisano S., Di Lauro R. Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res. 1994 Aug 11;22(15):3075–3083. doi: 10.1093/nar/22.15.3075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Damante G., Pellizzari L., Esposito G., Fogolari F., Viglino P., Fabbro D., Tell G., Formisano S., Di Lauro R. A molecular code dictates sequence-specific DNA recognition by homeodomains. EMBO J. 1996 Sep 16;15(18):4992–5000. [PMC free article] [PubMed] [Google Scholar]
  8. Dorman B. P., Maestre M. F. Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2. Proc Natl Acad Sci U S A. 1973 Jan;70(1):255–259. doi: 10.1073/pnas.70.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epstein J. A., Glaser T., Cai J., Jepeal L., Walton D. S., Maas R. L. Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes Dev. 1994 Sep 1;8(17):2022–2034. doi: 10.1101/gad.8.17.2022. [DOI] [PubMed] [Google Scholar]
  10. Epstein J., Cai J., Glaser T., Jepeal L., Maas R. Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes. J Biol Chem. 1994 Mar 18;269(11):8355–8361. [PubMed] [Google Scholar]
  11. Gruss P., Walther C. Pax in development. Cell. 1992 May 29;69(5):719–722. doi: 10.1016/0092-8674(92)90281-g. [DOI] [PubMed] [Google Scholar]
  12. Jun S., Desplan C. Cooperative interactions between paired domain and homeodomain. Development. 1996 Sep;122(9):2639–2650. doi: 10.1242/dev.122.9.2639. [DOI] [PubMed] [Google Scholar]
  13. Kozmik Z., Czerny T., Busslinger M. Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J. 1997 Nov 17;16(22):6793–6803. doi: 10.1093/emboj/16.22.6793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Mandel R., Fasman G. D. Chromatin and nucleosome structure. Nucleic Acids Res. 1976 Aug;3(8):1839–1855. doi: 10.1093/nar/3.8.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mansouri A., Hallonet M., Gruss P. Pax genes and their roles in cell differentiation and development. Curr Opin Cell Biol. 1996 Dec;8(6):851–857. doi: 10.1016/s0955-0674(96)80087-1. [DOI] [PubMed] [Google Scholar]
  17. Molnar G., O'Leary N., Pardee A. B., Bradley D. W. Quantification of DNA-protein interaction by UV crosslinking. Nucleic Acids Res. 1995 Aug 25;23(16):3318–3326. doi: 10.1093/nar/23.16.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noll M. Evolution and role of Pax genes. Curr Opin Genet Dev. 1993 Aug;3(4):595–605. doi: 10.1016/0959-437x(93)90095-7. [DOI] [PubMed] [Google Scholar]
  19. Pellizzari L., Fabbro D., Lonigro R., Di Lauro R., Damante G. A network of specific minor-groove contacts is a common characteristic of paired-domain-DNA interactions. Biochem J. 1996 Apr 15;315(Pt 2):363–367. doi: 10.1042/bj3150363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Plachov D., Chowdhury K., Walther C., Simon D., Guenet J. L., Gruss P. Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development. 1990 Oct;110(2):643–651. doi: 10.1242/dev.110.2.643. [DOI] [PubMed] [Google Scholar]
  21. Read A. P. Pax genes--paired feet in three camps. Nat Genet. 1995 Apr;9(4):333–334. doi: 10.1038/ng0495-333. [DOI] [PubMed] [Google Scholar]
  22. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  23. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  24. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  25. Thiesen H. J., Bach C. Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res. 1990 Jun 11;18(11):3203–3209. doi: 10.1093/nar/18.11.3203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Treisman J., Harris E., Desplan C. The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev. 1991 Apr;5(4):594–604. doi: 10.1101/gad.5.4.594. [DOI] [PubMed] [Google Scholar]
  27. Vogan K. J., Gros P. The C-terminal subdomain makes an important contribution to the DNA binding activity of the Pax-3 paired domain. J Biol Chem. 1997 Nov 7;272(45):28289–28295. doi: 10.1074/jbc.272.45.28289. [DOI] [PubMed] [Google Scholar]
  28. Walther C., Guenet J. L., Simon D., Deutsch U., Jostes B., Goulding M. D., Plachov D., Balling R., Gruss P. Pax: a murine multigene family of paired box-containing genes. Genomics. 1991 Oct;11(2):424–434. doi: 10.1016/0888-7543(91)90151-4. [DOI] [PubMed] [Google Scholar]
  29. Xu W., Rould M. A., Jun S., Desplan C., Pabo C. O. Crystal structure of a paired domain-DNA complex at 2.5 A resolution reveals structural basis for Pax developmental mutations. Cell. 1995 Feb 24;80(4):639–650. doi: 10.1016/0092-8674(95)90518-9. [DOI] [PubMed] [Google Scholar]
  30. Zannini M., Francis-Lang H., Plachov D., Di Lauro R. Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters. Mol Cell Biol. 1992 Sep;12(9):4230–4241. doi: 10.1128/mcb.12.9.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van der Kallen C. J., Spierings D. C., Thijssen J. H., Blankenstein M. A., de Bruin T. W. Disrupted co-ordination of Pax-8 and thyroid transcription factor-1 gene expression in a dedifferentiated rat thyroid tumour cell line derived from FRTL-5. J Endocrinol. 1996 Sep;150(3):377–382. doi: 10.1677/joe.0.1500377. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES