Abstract
The three-dimensional structure of the catalytic core of the family 6 cellobiohydrolase II, Cel6A (CBH II), from Humicola insolens has been determined by X-ray crystallography at a resolution of 1.92 A. The structure was solved by molecular replacement using the homologous Trichoderma reesei CBH II as a search model. The H. insolens enzyme displays a high degree of structural similarity with its T. reesei equivalent. The structure features both O- (alpha-linked mannose) and N-linked glycosylation and a hexa-co-ordinate Mg2+ ion. The active-site residues are located within the enclosed tunnel that is typical for cellobiohydrolase enzymes and which may permit a processive hydrolysis of the cellulose substrate. The close structural similarity between the two enzymes implies that kinetics and chain-end specificity experiments performed on the H. insolens enzyme are likely to be applicable to the homologous T. reesei enzyme. These cast doubt on the description of cellobiohydrolases as exo-enzymes since they demonstrated that Cel6A (CBH II) shows no requirement for non-reducing chain-ends, as had been presumed. There is no crystallographic evidence in the present structure to support a mechanism involving loop opening, yet preliminary modelling experiments suggest that the active-site tunnel of Cel6A (CBH II) is too narrow to permit entry of a fluorescenyl-derivatized substrate, known to be a viable substrate for this enzyme.
Full Text
The Full Text of this article is available as a PDF (308.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amano Y., Shiroishi M., Nisizawa K., Hoshino E., Kanda T. Fine substrate specificities of four exo-type cellulases produced by Aspergillus niger, Trichoderma reesei, and Irpex lacteus on (1-->3), (1-->4)-beta-D-glucans and xyloglucan. J Biochem. 1996 Dec;120(6):1123–1129. doi: 10.1093/oxfordjournals.jbchem.a021531. [DOI] [PubMed] [Google Scholar]
- Armand S., Drouillard S., Schülein M., Henrissat B., Driguez H. A bifunctionalized fluorogenic tetrasaccharide as a substrate to study cellulases. J Biol Chem. 1997 Jan 31;272(5):2709–2713. doi: 10.1074/jbc.272.5.2709. [DOI] [PubMed] [Google Scholar]
- Bayer E. A., Morag E., Lamed R. The cellulosome--a treasure-trove for biotechnology. Trends Biotechnol. 1994 Sep;12(9):379–386. doi: 10.1016/0167-7799(94)90039-6. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Damude H. G., Ferro V., Withers S. G., Warren R. A. Substrate specificity of endoglucanase A from Cellulomonas fimi: fundamental differences between endoglucanases and exoglucanases from family 6. Biochem J. 1996 Apr 15;315(Pt 2):467–472. doi: 10.1042/bj3150467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Damude H. G., Withers S. G., Kilburn D. G., Miller R. C., Jr, Warren R. A. Site-directed mutation of the putative catalytic residues of endoglucanase CenA from Cellulomonas fimi. Biochemistry. 1995 Feb 21;34(7):2220–2224. doi: 10.1021/bi00007a016. [DOI] [PubMed] [Google Scholar]
- Davies G. J. Structural studies on cellulases. Biochem Soc Trans. 1998 May;26(2):167–173. doi: 10.1042/bst0260167. [DOI] [PubMed] [Google Scholar]
- Davies G. J., Tolley S. P., Henrissat B., Hjort C., Schülein M. Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution. Biochemistry. 1995 Dec 12;34(49):16210–16220. doi: 10.1021/bi00049a037. [DOI] [PubMed] [Google Scholar]
- Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
- Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hehre E. J., Brewer C. F., Genghof D. S. Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of beta-amylase on alpha- and beta-maltosyl fluoride. J Biol Chem. 1979 Jul 10;254(13):5942–5950. [PubMed] [Google Scholar]
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
- Jencks W. P. Utilization of binding energy and coupling rules for active transport and other coupled vectorial processes. Methods Enzymol. 1989;171:145–164. doi: 10.1016/s0076-6879(89)71010-7. [DOI] [PubMed] [Google Scholar]
- Koivula A., Reinikainen T., Ruohonen L., Valkeajärvi A., Claeyssens M., Teleman O., Kleywegt G. J., Szardenings M., Rouvinen J., Jones T. A. The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169. Protein Eng. 1996 Aug;9(8):691–699. doi: 10.1093/protein/9.8.691. [DOI] [PubMed] [Google Scholar]
- Konstantinidis A. K., Marsden I., Sinnott M. L. Hydrolyses of alpha- and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei. Biochem J. 1993 May 1;291(Pt 3):883–888. doi: 10.1042/bj2910883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraulis J., Clore G. M., Nilges M., Jones T. A., Pettersson G., Knowles J., Gronenborn A. M. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 1989 Sep 5;28(18):7241–7257. doi: 10.1021/bi00444a016. [DOI] [PubMed] [Google Scholar]
- Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
- Meinke A., Damude H. G., Tomme P., Kwan E., Kilburn D. G., Miller R. C., Jr, Warren R. A., Gilkes N. R. Enhancement of the endo-beta-1,4-glucanase activity of an exocellobiohydrolase by deletion of a surface loop. J Biol Chem. 1995 Mar 3;270(9):4383–4386. doi: 10.1074/jbc.270.9.4383. [DOI] [PubMed] [Google Scholar]
- Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
- RAMACHANDRAN G. N., RAMAKRISHNAN C., SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95–99. doi: 10.1016/s0022-2836(63)80023-6. [DOI] [PubMed] [Google Scholar]
- Robyt J. F., French D. Multiple attach hypothesis of alpha-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae alpha-amylases. Arch Biochem Biophys. 1967 Oct;122(1):8–16. doi: 10.1016/0003-9861(67)90118-x. [DOI] [PubMed] [Google Scholar]
- Rouvinen J., Bergfors T., Teeri T., Knowles J. K., Jones T. A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science. 1990 Jul 27;249(4967):380–386. doi: 10.1126/science.2377893. [DOI] [PubMed] [Google Scholar]
- Schou C., Rasmussen G., Kaltoft M. B., Henrissat B., Schülein M. Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. Eur J Biochem. 1993 Nov 1;217(3):947–953. doi: 10.1111/j.1432-1033.1993.tb18325.x. [DOI] [PubMed] [Google Scholar]
- Spezio M., Wilson D. B., Karplus P. A. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry. 1993 Sep 28;32(38):9906–9916. doi: 10.1021/bi00089a006. [DOI] [PubMed] [Google Scholar]
- Ståhlberg J., Johansson G., Pettersson G. Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta. 1993 May 7;1157(1):107–113. doi: 10.1016/0304-4165(93)90085-m. [DOI] [PubMed] [Google Scholar]
- Törrönen A., Harkki A., Rouvinen J. Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 1994 Jun 1;13(11):2493–2501. doi: 10.1002/j.1460-2075.1994.tb06536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
