Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jan 15;337(Pt 2):305–309.

Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells.

M F Leite 1, J A Dranoff 1, L Gao 1, M H Nathanson 1
PMCID: PMC1219966  PMID: 9882629

Abstract

The ryanodine receptor (RyR) is the principal Ca2+-release channel in excitable cells, whereas the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is primarily responsible for Ca2+ release in non-excitable cells, including epithelia. RyR also is expressed in a number of non-excitable cell types, but is thought to serve as an auxiliary or alternative Ca2+-release pathway in those cells. Here we use reverse transcription PCR to show that a polarized epithelium, the pancreatic acinar cell, expresses the type 2, but not the type 1 or 3, isoform of RyR. We furthermore use immunochemistry to demonstrate that the type 2 RyR is distributed throughout the basolateral and, to a lesser extent, the apical region of the acinar cell, but is excluded from the trigger zone, where cytosolic Ca2+ signals originate in this cell type. Since propagation of Ca2+ waves in acinar cells is sensitive to ryanodine, caffeine and Ca2+, these findings suggest that Ca2+ waves in this cell type result from the co-ordinated release of Ca2+, first from InsP3Rs in the trigger zone, then from RyRs elsewhere in the cell. RyR may play a fundamental role in Ca2+ signalling in polarized epithelia, including for Ca2+ signals initiated by InsP3.

Full Text

The Full Text of this article is available as a PDF (236.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  2. Bennett D. L., Cheek T. R., Berridge M. J., De Smedt H., Parys J. B., Missiaen L., Bootman M. D. Expression and function of ryanodine receptors in nonexcitable cells. J Biol Chem. 1996 Mar 15;271(11):6356–6362. doi: 10.1074/jbc.271.11.6356. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  4. Campbell K. P., Knudson C. M., Imagawa T., Leung A. T., Sutko J. L., Kahl S. D., Raab C. R., Madson L. Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem. 1987 May 15;262(14):6460–6463. [PubMed] [Google Scholar]
  5. Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  9. DiJulio D. H., Watson E. L., Pessah I. N., Jacobson K. L., Ott S. M., Buck E. D., Singh J. C. Ryanodine receptor type III (Ry3R) identification in mouse parotid acini. Properties and modulation of [3H]ryanodine-binding sites. J Biol Chem. 1997 Jun 20;272(25):15687–15696. doi: 10.1074/jbc.272.25.15687. [DOI] [PubMed] [Google Scholar]
  10. Fallon M. B., Gorelick F. S., Anderson J. M., Mennone A., Saluja A., Steer M. L. Effect of cerulein hyperstimulation on the paracellular barrier of rat exocrine pancreas. Gastroenterology. 1995 Jun;108(6):1863–1872. doi: 10.1016/0016-5085(95)90151-5. [DOI] [PubMed] [Google Scholar]
  11. Giannini G., Conti A., Mammarella S., Scrobogna M., Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995 Mar;128(5):893–904. doi: 10.1083/jcb.128.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Go L. O., Moschella M. C., Watras J., Handa K. K., Fyfe B. S., Marks A. R. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest. 1995 Feb;95(2):888–894. doi: 10.1172/JCI117739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gromada J., Jørgensen T. D., Dissing S. Cyclic ADP-ribose and inositol 1,4,5-triphosphate mobilizes Ca2+ from distinct intracellular pools in permeabilized lacrimal acinar cells. FEBS Lett. 1995 Mar 6;360(3):303–306. doi: 10.1016/0014-5793(95)00131-r. [DOI] [PubMed] [Google Scholar]
  14. Gromada J., Jørgensen T. D., Dissing S. The release of intracellular Ca2+ in lacrimal acinar cells by alpha-, beta-adrenergic and muscarinic cholinergic stimulation: the roles of inositol triphosphate and cyclic ADP-ribose. Pflugers Arch. 1995 Apr;429(6):751–761. doi: 10.1007/BF00374798. [DOI] [PubMed] [Google Scholar]
  15. Ito K., Miyashita Y., Kasai H. Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J. 1997 Jan 15;16(2):242–251. doi: 10.1093/emboj/16.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kasai H., Augustine G. J. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature. 1990 Dec 20;348(6303):735–738. doi: 10.1038/348735a0. [DOI] [PubMed] [Google Scholar]
  17. Kasai H., Li Y. X., Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell. 1993 Aug 27;74(4):669–677. doi: 10.1016/0092-8674(93)90514-q. [DOI] [PubMed] [Google Scholar]
  18. Klein M. G., Cheng H., Santana L. F., Jiang Y. H., Lederer W. J., Schneider M. F. Two mechanisms of quantized calcium release in skeletal muscle. Nature. 1996 Feb 1;379(6564):455–458. doi: 10.1038/379455a0. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lai F. A., Erickson H. P., Rousseau E., Liu Q. Y., Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature. 1988 Jan 28;331(6154):315–319. doi: 10.1038/331315a0. [DOI] [PubMed] [Google Scholar]
  21. Lai F. A., Liu Q. Y., Xu L., el-Hashem A., Kramarcy N. R., Sealock R., Meissner G. Amphibian ryanodine receptor isoforms are related to those of mammalian skeletal or cardiac muscle. Am J Physiol. 1992 Aug;263(2 Pt 1):C365–C372. doi: 10.1152/ajpcell.1992.263.2.C365. [DOI] [PubMed] [Google Scholar]
  22. Lee H. C., Aarhus R., Walseth T. F. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):352–355. doi: 10.1126/science.8392749. [DOI] [PubMed] [Google Scholar]
  23. Lee M. G., Xu X., Zeng W., Diaz J., Wojcikiewicz R. J., Kuo T. H., Wuytack F., Racymaekers L., Muallem S. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem. 1997 Jun 20;272(25):15765–15770. doi: 10.1074/jbc.272.25.15765. [DOI] [PubMed] [Google Scholar]
  24. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  25. Moschella M. C., Marks A. R. Inositol 1,4,5-trisphosphate receptor expression in cardiac myocytes. J Cell Biol. 1993 Mar;120(5):1137–1146. doi: 10.1083/jcb.120.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murayama T., Ogawa Y. Properties of Ryr3 ryanodine receptor isoform in mammalian brain. J Biol Chem. 1996 Mar 1;271(9):5079–5084. doi: 10.1074/jbc.271.9.5079. [DOI] [PubMed] [Google Scholar]
  27. Mészáros L. G., Bak J., Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993 Jul 1;364(6432):76–79. doi: 10.1038/364076a0. [DOI] [PubMed] [Google Scholar]
  28. Nathanson M. H., Burgstahler A. D., Fallon M. B. Multistep mechanism of polarized Ca2+ wave patterns in hepatocytes. Am J Physiol. 1994 Sep;267(3 Pt 1):G338–G349. doi: 10.1152/ajpgi.1994.267.3.G338. [DOI] [PubMed] [Google Scholar]
  29. Nathanson M. H. Cellular and subcellular calcium signaling in gastrointestinal epithelium. Gastroenterology. 1994 May;106(5):1349–1364. doi: 10.1016/0016-5085(94)90030-2. [DOI] [PubMed] [Google Scholar]
  30. Nathanson M. H., Fallon M. B., Padfield P. J., Maranto A. R. Localization of the type 3 inositol 1,4,5-trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J Biol Chem. 1994 Feb 18;269(7):4693–4696. [PubMed] [Google Scholar]
  31. Nathanson M. H., Padfield P. J., O'Sullivan A. J., Burgstahler A. D., Jamieson J. D. Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J Biol Chem. 1992 Sep 5;267(25):18118–18121. [PubMed] [Google Scholar]
  32. Rakovic S., Galione A., Ashamu G. A., Potter B. V., Terrar D. A. A specific cyclic ADP-ribose antagonist inhibits cardiac excitation-contraction coupling. Curr Biol. 1996 Aug 1;6(8):989–996. doi: 10.1016/s0960-9822(02)00643-7. [DOI] [PubMed] [Google Scholar]
  33. Shoshan-Barmatz V., Pressley T. A., Higham S., Kraus-Friedmann N. Characterization of high-affinity ryanodine-binding sites of rat liver endoplasmic reticulum. Differences between liver and skeletal muscle. Biochem J. 1991 May 15;276(Pt 1):41–46. doi: 10.1042/bj2760041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shoshan-Barmatz V., Zhang G. H., Garretson L., Kraus-Friedmann N. Distinct ryanodine- and inositol 1,4,5-trisphosphate-binding sites in hepatic microsomes. Biochem J. 1990 Jun 15;268(3):699–705. doi: 10.1042/bj2680699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sonnleitner A., Conti A., Bertocchini F., Schindler H., Sorrentino V. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 1998 May 15;17(10):2790–2798. doi: 10.1093/emboj/17.10.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thorn P., Gerasimenko O., Petersen O. H. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells. EMBO J. 1994 May 1;13(9):2038–2043. doi: 10.1002/j.1460-2075.1994.tb06478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thorn P., Lawrie A. M., Smith P. M., Gallacher D. V., Petersen O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661–668. doi: 10.1016/0092-8674(93)90513-p. [DOI] [PubMed] [Google Scholar]
  38. Thorn P., Moreton R., Berridge M. Multiple, coordinated Ca2+ -release events underlie the inositol trisphosphate-induced local Ca2+ spikes in mouse pancreatic acinar cells. EMBO J. 1996 Mar 1;15(5):999–1003. [PMC free article] [PubMed] [Google Scholar]
  39. Tunwell R. E., Lai F. A. Ryanodine receptor expression in the kidney and a non-excitable kidney epithelial cell. J Biol Chem. 1996 Nov 22;271(47):29583–29588. doi: 10.1074/jbc.271.47.29583. [DOI] [PubMed] [Google Scholar]
  40. Verma A., Hirsch D. J., Snyder S. H. Calcium pools mobilized by calcium or inositol 1,4,5-trisphosphate are differentially localized in rat heart and brain. Mol Biol Cell. 1992 Jun;3(6):621–631. doi: 10.1091/mbc.3.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Verma V., Carter C., Keable S., Bennett D., Thorn P. Identification and function of type-2 and type-3 ryanodine receptors in gut epithelial cells. Biochem J. 1996 Oct 15;319(Pt 2):449–454. doi: 10.1042/bj3190449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yule D. I., Ernst S. A., Ohnishi H., Wojcikiewicz R. J. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells. J Biol Chem. 1997 Apr 4;272(14):9093–9098. doi: 10.1074/jbc.272.14.9093. [DOI] [PubMed] [Google Scholar]
  43. Zhang X., Wen J., Bidasee K. R., Besch H. R., Jr, Rubin R. P. Ryanodine receptor expression is associated with intracellular Ca2+ release in rat parotid acinar cells. Am J Physiol. 1997 Oct;273(4 Pt 1):C1306–C1314. doi: 10.1152/ajpcell.1997.273.4.C1306. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES