Skip to main content
Genetics logoLink to Genetics
. 1983 Feb;103(2):235–247. doi: 10.1093/genetics/103.2.235

Viability of Female Germ-Line Cells Homozygous for Zygotic Lethals in DROSOPHILA MELANOGASTER

Antonio Garcia-Bellido 1,2, Leonard G Robbins 1,2
PMCID: PMC1219976  PMID: 17246109

Abstract

We have analyzed the viability of different types of X chromosomes in homozygous clones of female germ cells. The chromosomes carried viable mutations, single-cistron zygotic-lethal and semi-lethal mutations, or small (about six chromosome band) deletions. Homozygous germ-line clones were produced by recombination in females heterozygous for an X-linked, dominant, agametic female sterile.

All the zygotic-viable mutants are also viable in germ cells. Of 16 deletions tested (uncovering a total of 93 bands) only 2 (of 4 and 5 bands) are germ-cell viable. Mutations in 15 lethal complementation groups in the zeste-white region were tested. When known, the most extreme alleles at each locus were tested. Only in five loci (33%) were the mutants viable in the germ line. Similar studies of the same deletions and point-mutant lethals in epidermal cells show that 42% of the bands and 77% of the lethal alleles are viable. Thus, germ-line cells have more stringent cell-autonomous genetic requirements than do epidermal cells.

The eggs recovered from clones of three of the germ-cell viable zw mutations gave embryos arrested early in embryogenesis, although genotypically identical embryos derived from heterozygous oogonia die as larvae or even hatch as adult escapers. For two genes, homozygosis of the mutations tested also caused embryonic arrest of heterozygous female embryos, and in one case, the eggs did not develop at all. Germ-line clones of one quite leaky mutation gave eggs that were indistinguishable from normal. The abundance of genes whose products are required for oogenesis, whose products are required in the oocyte, and whose activity is required during zygotic development is discussed.

Full Text

The Full Text of this article is available as a PDF (894.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Garcia-Bellido A., Ripoll P. The number of genes in Drosophila melanogaster. Nature. 1978 Jun 1;273(5661):399–400. doi: 10.1038/273399a0. [DOI] [PubMed] [Google Scholar]
  2. García-Bellido A. Genetic Analysis of the Achaete-Scute System of DROSOPHILA MELANOGASTER. Genetics. 1979 Mar;91(3):491–520. doi: 10.1093/genetics/91.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gehring W. J. Developmental genetics of Drosophila. Annu Rev Genet. 1976;10:209–252. doi: 10.1146/annurev.ge.10.120176.001233. [DOI] [PubMed] [Google Scholar]
  4. Jiménez F., Campos-Ortega J. A. A region of the Drosophila genome necessary for CNS development. Nature. 1979 Nov 15;282(5736):310–312. doi: 10.1038/282310a0. [DOI] [PubMed] [Google Scholar]
  5. Judd B. H., Shen M. W., Kaufman T. C. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics. 1972 May;71(1):139–156. doi: 10.1093/genetics/71.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lefevre G., Jr, Green M. M. Genetic duplication in the white-split interval of the X chromosome in Drosophila melanogaster. Chromosoma. 1972;36(4):391–412. doi: 10.1007/BF00336795. [DOI] [PubMed] [Google Scholar]
  7. Lim J. K., Snyder L. A. Cytogenetic and complementation analyses of recessive lethal mutations induced in the X chromosome of Drosophila by three alkylating agents. Genet Res. 1974 Aug;24(1):1–10. doi: 10.1017/s0016672300015020. [DOI] [PubMed] [Google Scholar]
  8. Morata G., Ripoll P. Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol. 1975 Feb;42(2):211–221. doi: 10.1016/0012-1606(75)90330-9. [DOI] [PubMed] [Google Scholar]
  9. Ripoll P. Behavior of somatic cells homozygous for zygotic lethals in Drosophila melanogaster. Genetics. 1977 Jun;86(2 Pt 1):357–376. [PMC free article] [PubMed] [Google Scholar]
  10. Ripoll P., Garcia-Bellido A. Cell autonomous lethals in Drosophila melanogaster. Nat New Biol. 1973 Jan 3;241(105):15–16. doi: 10.1038/newbio241015a0. [DOI] [PubMed] [Google Scholar]
  11. Ripoll P., García-Bellido A. Viability of Homozygous Deficiencies in Somatic Cells of DROSOPHILA MELANOGASTER. Genetics. 1979 Mar;91(3):443–453. doi: 10.1093/genetics/91.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wieschaus E. A combined genetic and mosaic approach to the study of oogenesis in Drosophila. Basic Life Sci. 1980;16:85–94. doi: 10.1007/978-1-4684-7968-3_7. [DOI] [PubMed] [Google Scholar]
  13. Wieschaus E., Szabad J. The development and function of the female germ line in Drosophila melanogaster: a cell lineage study. Dev Biol. 1979 Jan;68(1):29–46. doi: 10.1016/0012-1606(79)90241-0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES