Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 1;337(Pt 3):363–371.

Differential expression of two novel Munc13 proteins in rat brain.

I Augustin 1, A Betz 1, C Herrmann 1, T Jo 1, N Brose 1
PMCID: PMC1219986  PMID: 9895278

Abstract

Munc13-1, a mammalian homologue of Caenorhabditis elegans unc-13p, is a presynaptic phorbol ester receptor that enhances neurotransmitter release. In the present study we analysed the regional, cellular and subcellular expression patterns in rat of two novel Munc13 proteins, Munc13-2 and Munc13-3. We demonstrate by hybridization in situ that Munc13-1 mRNA is expressed throughout the brain, whereas Munc13-2 mRNA is preferentially present in rostral brain regions, and Munc13-3 mRNA in caudal areas. In an analysis of subcellular brain fractions with isoform-specific antibodies, we show that the novel Munc13 proteins are enriched in synapses. Immunocytochemical examination of rat cerebellar sections indicates that Munc13-3, like Munc13-1, is concentrated in presynaptic terminals. Our results characterize Munc13 proteins as a family of neuron-specific, synaptic molecules that bind to syntaxin, an essential mediator of neurotransmitter release. Munc13-2 and Munc13-3 are expressed in a complementary fashion and might act in concert with Munc13-1 to modulate neurotransmitter release.

Full Text

The Full Text of this article is available as a PDF (358.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnstable C. J., Hofstein R., Akagawa K. A marker of early amacrine cell development in rat retina. Brain Res. 1985 Jun;352(2):286–290. doi: 10.1016/0165-3806(85)90116-6. [DOI] [PubMed] [Google Scholar]
  2. Betz A., Ashery U., Rickmann M., Augustin I., Neher E., Südhof T. C., Rettig J., Brose N. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron. 1998 Jul;21(1):123–136. doi: 10.1016/s0896-6273(00)80520-6. [DOI] [PubMed] [Google Scholar]
  3. Betz A., Okamoto M., Benseler F., Brose N. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem. 1997 Jan 24;272(4):2520–2526. doi: 10.1074/jbc.272.4.2520. [DOI] [PubMed] [Google Scholar]
  4. Brose N., Halpain S., Suchanek C., Jahn R. Characterization and partial purification of a chloride- and calcium-dependent glutamate-binding protein from rat brain. J Biol Chem. 1989 Jun 5;264(16):9619–9625. [PubMed] [Google Scholar]
  5. Brose N., Hofmann K., Hata Y., Südhof T. C. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem. 1995 Oct 20;270(42):25273–25280. doi: 10.1074/jbc.270.42.25273. [DOI] [PubMed] [Google Scholar]
  6. Brose N., Huntley G. W., Stern-Bach Y., Sharma G., Morrison J. H., Heinemann S. F. Differential assembly of coexpressed glutamate receptor subunits in neurons of rat cerebral cortex. J Biol Chem. 1994 Jun 17;269(24):16780–16784. [PubMed] [Google Scholar]
  7. Brose N., Petrenko A. G., Südhof T. C., Jahn R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science. 1992 May 15;256(5059):1021–1025. doi: 10.1126/science.1589771. [DOI] [PubMed] [Google Scholar]
  8. Burger P. M., Mehl E., Cameron P. L., Maycox P. R., Baumert M., Lottspeich F., De Camilli P., Jahn R. Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron. 1989 Dec;3(6):715–720. doi: 10.1016/0896-6273(89)90240-7. [DOI] [PubMed] [Google Scholar]
  9. Cremona O., De Camilli P. Synaptic vesicle endocytosis. Curr Opin Neurobiol. 1997 Jun;7(3):323–330. doi: 10.1016/s0959-4388(97)80059-1. [DOI] [PubMed] [Google Scholar]
  10. Daly C., Ziff E. B. Post-transcriptional regulation of synaptic vesicle protein expression and the developmental control of synaptic vesicle formation. J Neurosci. 1997 Apr 1;17(7):2365–2375. doi: 10.1523/JNEUROSCI.17-07-02365.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edelmann L., Hanson P. I., Chapman E. R., Jahn R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J. 1995 Jan 16;14(2):224–231. doi: 10.1002/j.1460-2075.1995.tb06995.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  13. Hanson P. I., Heuser J. E., Jahn R. Neurotransmitter release - four years of SNARE complexes. Curr Opin Neurobiol. 1997 Jun;7(3):310–315. doi: 10.1016/s0959-4388(97)80057-8. [DOI] [PubMed] [Google Scholar]
  14. Hay J. C., Scheller R. H. SNAREs and NSF in targeted membrane fusion. Curr Opin Cell Biol. 1997 Aug;9(4):505–512. doi: 10.1016/s0955-0674(97)80026-9. [DOI] [PubMed] [Google Scholar]
  15. Huttner W. B., Schiebler W., Greengard P., De Camilli P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol. 1983 May;96(5):1374–1388. doi: 10.1083/jcb.96.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jahn R., Schiebler W., Ouimet C., Greengard P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4137–4141. doi: 10.1073/pnas.82.12.4137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. McMahon H. T., Foran P., Dolly J. O., Verhage M., Wiegant V. M., Nicholls D. G. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J Biol Chem. 1992 Oct 25;267(30):21338–21343. [PubMed] [Google Scholar]
  19. Murthy V. N., Stevens C. F. Synaptic vesicles retain their identity through the endocytic cycle. Nature. 1998 Apr 2;392(6675):497–501. doi: 10.1038/33152. [DOI] [PubMed] [Google Scholar]
  20. Orita S., Naito A., Sakaguchi G., Maeda M., Igarashi H., Sasaki T., Takai Y. Physical and functional interactions of Doc2 and Munc13 in Ca2+-dependent exocytotic machinery. J Biol Chem. 1997 Jun 27;272(26):16081–16084. doi: 10.1074/jbc.272.26.16081. [DOI] [PubMed] [Google Scholar]
  21. Rickmann M., Wolff J. R. S100 protein expression in subpopulations of neurons of rat brain. Neuroscience. 1995 Aug;67(4):977–991. doi: 10.1016/0306-4522(94)00615-c. [DOI] [PubMed] [Google Scholar]
  22. Söllner T. H., Rothman J. E. Molecular machinery mediating vesicle budding, docking and fusion. Experientia. 1996 Dec 15;52(12):1021–1025. doi: 10.1007/BF01952097. [DOI] [PubMed] [Google Scholar]
  23. Telemenakis I., Benseler F., Stenius K., Südhof T. C., Brose N. Rat homologues of yeast sec7p. Eur J Cell Biol. 1997 Oct;74(2):143–149. [PubMed] [Google Scholar]
  24. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Walch-Solimena C., Blasi J., Edelmann L., Chapman E. R., von Mollard G. F., Jahn R. The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J Cell Biol. 1995 Feb;128(4):637–645. doi: 10.1083/jcb.128.4.637. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES