Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 1;337(Pt 3):373–377.

Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase.

R Gordon-Weeks 1, S Parmar 1, T G Davies 1, R A Leigh 1
PMCID: PMC1219987  PMID: 9895279

Abstract

The bisphosphonates (general structure PO3-R-PO3) competitively inhibit soluble and membrane-bound inorganic pyrophosphatases (PPases) with differing degrees of specificity. Aminomethylenebisphosphonate (AMBP; HC(PO3)2NH2) is a potent, specific inhibitor of the PPase of higher plant vacuoles (V-PPase). To explore the possibility of constructing photoactivatable probes from bisphosphonates to label the active site of V-PPase we analysed the effects of different analogues on the hydrolytic and proton pumping activity of the enzyme. Bisphosphonates with a range of structures inhibited competitively and the effects on PPi hydrolysis correlated with the effects on proton pumping. Low-molecular-mass bisphosphonates containing hydrophilic groups (alpha-NH2 or OH) were the most effective, suggesting that the catalytic site is in a restricted polar pocket. Bisphosphonates containing a benzene ring were less active but the introduction of a nitrogen atom into the ring increased activity. Compounds of the general formula NH2(CH2)nC(PO3)2OH were more inhibitory than compounds of the H(CH2)nC(PO3)2NH2, NH2(CH2)nC(PO3)2NH2 or OH(CH2)nC(PO3)2NH2 series, with activity decreasing as n increased. A nitrogen atom in the carbon chain increased activity but activity was decreased by the presence of an oxygen atom. An analogue with a ring attached via a four-carbon chain, which included an amide linkage and a hydroxy group on the alpha-carbon atom, inhibited competitively (Ki=62.0 microM), suggesting that it may be possible to design bisphosphonate inhibitors which contain a photoactivatable azido group for photoaffinity labelling of V-PPase active site.

Full Text

The Full Text of this article is available as a PDF (129.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baykov A. A., Bakuleva N. P., Rea P. A. Steady-state kinetics of substrate hydrolysis by vacuolar H(+)-pyrophosphatase. A simple three-state model. Eur J Biochem. 1993 Oct 15;217(2):755–762. doi: 10.1111/j.1432-1033.1993.tb18303.x. [DOI] [PubMed] [Google Scholar]
  2. Boonekamp P. M., Löwik C. W., van der Wee-Pals L. J., van Wijk-van Lennep M. L., Bijvoet O. L. Enhancement of the inhibitory action of APD on the transformation of osteoclast precursors into resorbing cells after dimethylation of the amino group. Bone Miner. 1987 Feb;2(1):29–42. [PubMed] [Google Scholar]
  3. Darley C. P., Davies J. M., Sanders D. Chill-Induced Changes in the Activity and Abundance of the Vacuolar Proton-Pumping Pyrophosphatase from Mung Bean Hypocotyls. Plant Physiol. 1995 Oct;109(2):659–665. doi: 10.1104/pp.109.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fleisch H., Russell R. G., Francis M. D. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science. 1969 Sep 19;165(3899):1262–1264. doi: 10.1126/science.165.3899.1262. [DOI] [PubMed] [Google Scholar]
  5. Frith J. C., Mönkkönen J., Blackburn G. M., Russell R. G., Rogers M. J. Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5'-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res. 1997 Sep;12(9):1358–1367. doi: 10.1359/jbmr.1997.12.9.1358. [DOI] [PubMed] [Google Scholar]
  6. Gordon-Weeks R., Koren'kov V. D., Steele S. H., Leigh R. A. Tris Is a Competitive Inhibitor of K+ Activation of the Vacuolar H+-Pumping Pyrophosphatase. Plant Physiol. 1997 Jul;114(3):901–905. doi: 10.1104/pp.114.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gordon-Weeks R., Steele S. H., Leigh R. A. The Role of Magnesium, Pyrophosphate, and Their Complexes as Substrates and Activators of the Vacuolar H+-Pumping Inorganic Pyrophosphatase (Studies Using Ligand Protection from Covalent Inhibitors). Plant Physiol. 1996 May;111(1):195–202. doi: 10.1104/pp.111.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kim E. J., Zhen R. G., Rea P. A. Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6128–6132. doi: 10.1073/pnas.91.13.6128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kim Y., Kim E. J., Rea P. A. Isolation and characterization of cDNAs encoding the vacuolar H(+)-pyrophosphatase of Beta vulgaris. Plant Physiol. 1994 Sep;106(1):375–382. doi: 10.1104/pp.106.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leigh R. A., Pope A. J., Jennings I. R., Sanders D. Kinetics of the Vacuolar H-Pyrophosphatase : The Roles of Magnesium, Pyrophosphate, and their Complexes as Substrates, Activators, and Inhibitors. Plant Physiol. 1992 Dec;100(4):1698–1705. doi: 10.1104/pp.100.4.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakanishi Y., Maeshima M. Molecular cloning of vacuolar H(+)-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol. 1998 Feb;116(2):589–597. doi: 10.1104/pp.116.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nore B. F., Sakai-Nore Y., Maeshima M., Baltscheffsky M., Nyrén P. Immunological cross-reactivity between proton-pumping inorganic pyrophosphatases of widely phylogenic separated species. Biochem Biophys Res Commun. 1991 Dec 31;181(3):962–967. doi: 10.1016/0006-291x(91)92030-n. [DOI] [PubMed] [Google Scholar]
  13. Rea P. A., Britten C. J., Sarafian V. Common identity of substrate binding subunit of vacuolar h-translocating inorganic pyrophosphatase of higher plant cells. Plant Physiol. 1992 Oct;100(2):723–732. doi: 10.1104/pp.100.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rogers M. J., Watts D. J., Russell R. G., Ji X., Xiong X., Blackburn G. M., Bayless A. V., Ebetino F. H. Inhibitory effects of bisphosphonates on growth of amoebae of the cellular slime mold Dictyostelium discoideum. J Bone Miner Res. 1994 Jul;9(7):1029–1039. doi: 10.1002/jbmr.5650090710. [DOI] [PubMed] [Google Scholar]
  15. Rogers M. J., Xiong X., Brown R. J., Watts D. J., Russell R. G., Bayless A. V., Ebetino F. H. Structure-activity relationships of new heterocycle-containing bisphosphonates as inhibitors of bone resorption and as inhibitors of growth of Dictyostelium discoideum amoebae. Mol Pharmacol. 1995 Feb;47(2):398–402. [PubMed] [Google Scholar]
  16. Sakakibara Y., Kobayashi H., Kasamo K. Isolation and characterization of cDNAs encoding vacuolar H(+)-pyrophosphatase isoforms from rice (Oryza sativa L.). Plant Mol Biol. 1996 Aug;31(5):1029–1038. doi: 10.1007/BF00040721. [DOI] [PubMed] [Google Scholar]
  17. Sarafian V., Kim Y., Poole R. J., Rea P. A. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1775–1779. doi: 10.1073/pnas.89.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sietsema W. K., Ebetino F. H., Salvagno A. M., Bevan J. A. Antiresorptive dose-response relationships across three generations of bisphosphonates. Drugs Exp Clin Res. 1989;15(9):389–396. [PubMed] [Google Scholar]
  19. Smirnova I. N., Kudryavtseva N. A., Komissarenko S. V., Tarusova N. B., Baykov A. A. Diphosphonates are potent inhibitors of mammalian inorganic pyrophosphatase. Arch Biochem Biophys. 1988 Nov 15;267(1):280–284. doi: 10.1016/0003-9861(88)90033-1. [DOI] [PubMed] [Google Scholar]
  20. Sze H., Ward J. M., Lai S. Vacuolar H(+)-translocating ATPases from plants: structure, function, and isoforms. J Bioenerg Biomembr. 1992 Aug;24(4):371–381. doi: 10.1007/BF00762530. [DOI] [PubMed] [Google Scholar]
  21. Tanaka Y., Chiba K., Maeda M., Maeshima M. Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1110–1114. doi: 10.1006/bbrc.1993.1164. [DOI] [PubMed] [Google Scholar]
  22. Zhen R. G., Baykov A. A., Bakuleva N. P., Rea P. A. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases. Plant Physiol. 1994 Jan;104(1):153–159. doi: 10.1104/pp.104.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES