Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 1;337(Pt 3):387–395.

A comparative study of the activation of protein kinase C alpha by different diacylglycerol isomers.

P Sánchez-Piñera 1, V Micol 1, S Corbalán-García 1, J C Gómez-Fernández 1
PMCID: PMC1219989  PMID: 9895281

Abstract

The lipid activation of protein kinase C alpha (PKC alpha) has been studied by comparing the activation capacity of different 1, 2-diacylglycerols and 1,3-diacylglycerols incorporated into mixed micelles or vesicles. Unsaturated 1,2-diacylglycerols were, in general, more potent activators than saturated ones when 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS)/Triton X-100 mixed micelles and pure POPS vesicles were used. In contrast, these differences were not observed when 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS (4:1, molar ratio) vesicles were used. Diacylglycerols bearing short fatty acyl chains showed a very high activation capacity, however, the capacity was less in mixed micelles. Furthermore, 1, 2-diacylglycerols had a considerably higher activating capacity than 1,3-diacylglycerols in POPS/Triton X-100 mixed micelles and in POPC/POPS vesicles. However, the differences between the two types of diacylglycerols were smaller when pure POPS vesicles were used. Differential scanning calorimetry (DSC) showed that POPC/POPS membrane samples containing diacylglycerols had endothermic transitions in the presence of 200 microM Ca2+ and 5 mM Mg2+. Transitions were not detected when using pure POPS vesicles due to the formation of dehydrated phases as demonstrated by FTIR (Fourier-transform infrared) spectroscopy. PKC alpha binding studies, performed by differential centrifugation in the presence of 200 microM Ca2+ and 5 mM Mg2+, showed that 1,2-sn-dioleoylglycerol (1, 2-DOG) was more effective than 1,3-dioleoylglycerol (1,3-DOG) in promoting binding to POPC/POPS vesicles. However, when pure POPS vesicles were used, PKC alpha was able to bind to membranes containing either 1,2-DOG or 1,3-DOG to the same extent.

Full Text

The Full Text of this article is available as a PDF (191.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell R. M., Burns D. J. Lipid activation of protein kinase C. J Biol Chem. 1991 Mar 15;266(8):4661–4664. [PubMed] [Google Scholar]
  2. Bolen E. J., Sando J. J. Effect of phospholipid unsaturation on protein kinase C activation. Biochemistry. 1992 Jun 30;31(25):5945–5951. doi: 10.1021/bi00140a034. [DOI] [PubMed] [Google Scholar]
  3. Boni L. T., Rando R. R. The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. J Biol Chem. 1985 Sep 5;260(19):10819–10825. [PubMed] [Google Scholar]
  4. Burns D. J., Bloomenthal J., Lee M. H., Bell R. M. Expression of the alpha, beta II, and gamma protein kinase C isozymes in the baculovirus-insect cell expression system. Purification and characterization of the individual isoforms. J Biol Chem. 1990 Jul 15;265(20):12044–12051. [PubMed] [Google Scholar]
  5. Conn P. M., Ganong B. R., Ebeling J., Staley D., Neidel J. E., Bell R. M. Diacylglycerols release LH: structure-activity relations reveal a role for protein kinase C. Biochem Biophys Res Commun. 1985 Jan 16;126(1):532–539. doi: 10.1016/0006-291x(85)90638-2. [DOI] [PubMed] [Google Scholar]
  6. Feigenson G. W. On the nature of calcium ion binding between phosphatidylserine lamellae. Biochemistry. 1986 Sep 23;25(19):5819–5825. doi: 10.1021/bi00367a071. [DOI] [PubMed] [Google Scholar]
  7. Flach C. R., Mendelsohn R. A new infrared spectroscopoic marker for cochleate phases in phosphatidylserine-containing model membranes. Biophys J. 1993 Apr;64(4):1113–1121. doi: 10.1016/S0006-3495(93)81477-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ganong B. R., Loomis C. R., Hannun Y. A., Bell R. M. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1184–1188. doi: 10.1073/pnas.83.5.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giorgione J. R., Huang Z., Epand R. M. Increased activation of protein kinase C with cubic phase lipid compared with liposomes. Biochemistry. 1998 Feb 24;37(8):2384–2392. doi: 10.1021/bi970873e. [DOI] [PubMed] [Google Scholar]
  10. Go M., Sekiguchi K., Nomura H., Kikkawa U., Nishizuka Y. Further studies on the specificity of diacylglycerol for protein kinase C activation. Biochem Biophys Res Commun. 1987 Apr 29;144(2):598–605. doi: 10.1016/s0006-291x(87)80008-6. [DOI] [PubMed] [Google Scholar]
  11. Goldberg E. M., Lester D. S., Borchardt D. B., Zidovetzki R. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers. Biophys J. 1994 Feb;66(2 Pt 1):382–393. doi: 10.1016/s0006-3495(94)80788-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldberg E. M., Zidovetzki R. Effects of dipalmitoylglycerol and fatty acids on membrane structure and protein kinase C activity. Biophys J. 1997 Nov;73(5):2603–2614. doi: 10.1016/S0006-3495(97)78290-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldberg E. M., Zidovetzki R. Synergistic effects of diacylglycerols and fatty acids on membrane structure and protein kinase C activity. Biochemistry. 1998 Apr 21;37(16):5623–5632. doi: 10.1021/bi9719354. [DOI] [PubMed] [Google Scholar]
  14. Hannun Y. A., Loomis C. R., Bell R. M. Activation of protein kinase C by Triton X-100 mixed micelles containing diacylglycerol and phosphatidylserine. J Biol Chem. 1985 Aug 25;260(18):10039–10043. [PubMed] [Google Scholar]
  15. Hannun Y. A., Loomis C. R., Bell R. M. Protein kinase C activation in mixed micelles. Mechanistic implications of phospholipid, diacylglycerol, and calcium interdependencies. J Biol Chem. 1986 Jun 5;261(16):7184–7190. [PubMed] [Google Scholar]
  16. Hauser H., Shipley G. G. Interactions of divalent cations with phosphatidylserine bilayer membranes. Biochemistry. 1984 Jan 3;23(1):34–41. doi: 10.1021/bi00296a006. [DOI] [PubMed] [Google Scholar]
  17. Heimburg T., Würz U., Marsh D. Binary phase diagram of hydrated dimyristoylglycerol-dimyristoylphosphatidylcholine mixtures. Biophys J. 1992 Nov;63(5):1369–1378. doi: 10.1016/S0006-3495(92)81714-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hinderliter A. K., Dibble A. R., Biltonen R. L., Sando J. J. Activation of protein kinase C by coexisting diacylglycerol-enriched and diacylglycerol-poor lipid domains. Biochemistry. 1997 May 20;36(20):6141–6148. doi: 10.1021/bi962715d. [DOI] [PubMed] [Google Scholar]
  19. Jiménez-Monreal A. M., Villalaín J., Aranda F. J., Gómez-Fernández J. C. The phase behavior of aqueous dispersions of unsaturated mixtures of diacylglycerols and phospholipids. Biochim Biophys Acta. 1998 Aug 14;1373(1):209–219. doi: 10.1016/s0005-2736(98)00106-0. [DOI] [PubMed] [Google Scholar]
  20. Lapetina E. G., Reep B., Ganong B. R., Bell R. M. Exogenous sn-1,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets. J Biol Chem. 1985 Feb 10;260(3):1358–1361. [PubMed] [Google Scholar]
  21. López-García F., Micol V., Villalaín J., Gómez-Fernández J. C. Infrared spectroscopic study of the interaction of diacylglycerol with phosphatidylserine in the presence of calcium. Biochim Biophys Acta. 1993 Sep 8;1169(3):264–272. doi: 10.1016/0005-2760(93)90250-d. [DOI] [PubMed] [Google Scholar]
  22. Medkova M., Cho W. Differential membrane-binding and activation mechanisms of protein kinase C-alpha and -epsilon. Biochemistry. 1998 Apr 7;37(14):4892–4900. doi: 10.1021/bi972495j. [DOI] [PubMed] [Google Scholar]
  23. Mellor H., Parker P. J. The extended protein kinase C superfamily. Biochem J. 1998 Jun 1;332(Pt 2):281–292. doi: 10.1042/bj3320281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mori T., Takai Y., Yu B., Takahashi J., Nishizuka Y., Fujikura T. Specificity of the fatty acyl moieties of diacylglycerol for the activation of calcium-activated, phospholipid-dependent protein kinase. J Biochem. 1982 Feb;91(2):427–431. doi: 10.1093/oxfordjournals.jbchem.a133714. [DOI] [PubMed] [Google Scholar]
  25. Mosior M., Newton A. C. Mechanism of interaction of protein kinase C with phorbol esters. Reversibility and nature of membrane association. J Biol Chem. 1995 Oct 27;270(43):25526–25533. doi: 10.1074/jbc.270.43.25526. [DOI] [PubMed] [Google Scholar]
  26. Nakamura S., Nishizuka Y. Lipid mediators and protein kinase C activation for the intracellular signaling network. J Biochem. 1994 Jun;115(6):1029–1034. doi: 10.1093/oxfordjournals.jbchem.a124451. [DOI] [PubMed] [Google Scholar]
  27. Newton A. C. Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annu Rev Biophys Biomol Struct. 1993;22:1–25. doi: 10.1146/annurev.bb.22.060193.000245. [DOI] [PubMed] [Google Scholar]
  28. Newton A. C. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995 Dec 1;270(48):28495–28498. doi: 10.1074/jbc.270.48.28495. [DOI] [PubMed] [Google Scholar]
  29. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  30. Nomura H., Ase K., Sekiguchi K., Kikkawa U., Nishizuka Y., Nakano Y., Satoh T. Stereospecificity of diacylglycerol for stimulus-response coupling in platelets. Biochem Biophys Res Commun. 1986 Nov 14;140(3):1143–1151. doi: 10.1016/0006-291x(86)90754-0. [DOI] [PubMed] [Google Scholar]
  31. Orr J. W., Newton A. C. Interaction of protein kinase C with phosphatidylserine. 2. Specificity and regulation. Biochemistry. 1992 May 19;31(19):4667–4673. doi: 10.1021/bi00134a019. [DOI] [PubMed] [Google Scholar]
  32. Ortiz A., Villalaín J., Gómez-Fernández J. C. Interaction of diacylglycerols with phosphatidylcholine vesicles as studied by differential scanning calorimetry and fluorescence probe depolarization. Biochemistry. 1988 Dec 13;27(25):9030–9036. doi: 10.1021/bi00425a022. [DOI] [PubMed] [Google Scholar]
  33. Papahadjopoulos D., Poste G., Schaeffer B. E., Vail W. J. Membrane fusion and molecular segregation in phospholipid vesicles. Biochim Biophys Acta. 1974 May 30;352(1):10–28. doi: 10.1016/0005-2736(74)90175-8. [DOI] [PubMed] [Google Scholar]
  34. Papahadjopoulos D., Vail W. J., Jacobson K., Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta. 1975 Jul 3;394(3):483–491. doi: 10.1016/0005-2736(75)90299-0. [DOI] [PubMed] [Google Scholar]
  35. Rando R. R., Young N. The stereospecific activation of protein kinase C. Biochem Biophys Res Commun. 1984 Jul 31;122(2):818–823. doi: 10.1016/s0006-291x(84)80107-2. [DOI] [PubMed] [Google Scholar]
  36. Sandermann H., Jr, Duncan T. M. Lipid-dependent membrane enzymes. Kinetic modelling of the activation of protein kinase C by phosphatidylserine. Biochim Biophys Acta. 1991 Nov 4;1069(2):235–240. doi: 10.1016/0005-2736(91)90130-z. [DOI] [PubMed] [Google Scholar]
  37. Schaap D., Parker P. J. Expression, purification, and characterization of protein kinase C-epsilon. J Biol Chem. 1990 May 5;265(13):7301–7307. [PubMed] [Google Scholar]
  38. Snoek G. T., Feijen A., Hage W. J., van Rotterdam W., de Laat S. W. The role of hydrophobic interactions in the phospholipid-dependent activation of protein kinase C. Biochem J. 1988 Oct 15;255(2):629–637. [PMC free article] [PubMed] [Google Scholar]
  39. Walker J. M., Homan E. C., Sando J. J. Differential activation of protein kinase C isozymes by short chain phosphatidylserines and phosphatidylcholines. J Biol Chem. 1990 May 15;265(14):8016–8021. [PubMed] [Google Scholar]
  40. Walker J. M., Sando J. J. Activation of protein kinase C by short chain phosphatidylcholines. J Biol Chem. 1988 Apr 5;263(10):4537–4540. [PubMed] [Google Scholar]
  41. Zidovetzki R., Lester D. S. The mechanism of activation of protein kinase C: a biophysical perspective. Biochim Biophys Acta. 1992 Apr 7;1134(3):261–272. doi: 10.1016/0167-4889(92)90185-e. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES