Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 1;337(Pt 3):407–414.

A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes.

M M Pelsers 1, J T Lutgerink 1, F A Nieuwenhoven 1, N N Tandon 1, G J van der Vusse 1, J W Arends 1, H R Hoogenboom 1, J F Glatz 1
PMCID: PMC1219991  PMID: 9895283

Abstract

The rat membrane protein fatty acid translocase (FAT), which shows sequence similarity to human CD36 (a membrane protein supposedly involved in a variety of membrane processes), is implicated in the transport of long-chain fatty acids across cellular membranes. To set up an immunoassay for quantification of FAT in different tissues, we isolated a series of anti-FAT antibodies by panning a large naive phage antibody library on FAT-transfected H9c2 cells. All seven different phage antibody fragments isolated reacted specifically with FAT, and most likely recognize the same or closely located immunodominant sites on FAT, as a competitive monoclonal antibody (mAb) (CLB-IV7) completely blocked the binding of all these phage antibodies to cells. A sandwich ELISA was set up using mAb 131. 4 (directed against purified CD36 from human platelets) as capture antibody and phage antibodies and anti-phage sera as detector. With this ELISA (sensitivity 0.05 microgram/ml), the FAT content in isolated cardiomyocytes was found to be comparable with that of total heart ( approximately 3 mg/g of protein), while liver tissue and endothelial cells were below the detection limit (<0.1 mg of FAT/g of protein). During rat heart development, protein levels of FAT rose from 1.7+/-0.7 mg/g of protein on the day before birth to 3.6+/-0.4 mg/g of protein on day 70. Comparing control with streptozotocin-induced diabetic rats, a statistically significant (P<0.05) 2-4-fold increase of FAT was seen in heart (from 4.2+/-2.3 to 11.0+/-5.7 mg/g of protein), soleus (from 0.6+/-0.1 to 1.4+/-0.5 mg/g of protein) and extensor digitorum longus (EDL) muscle (from 0.3+/-0.1 to 1. 2+/-0.8 mg/g of protein). In addition, the FAT contents of each of these muscles were found to be of similar magnitude to the contents of cytoplasmic heart-type fatty-acid-binding protein in both diabetic rats and controls, supporting the suggested roles of these two proteins in cellular fatty acid metabolism. This is the first time phage display technology has been succesfully applied for direct selection, from a large naive antibody library, of antibodies that recognize selected membrane proteins in their natural context.

Full Text

The Full Text of this article is available as a PDF (198.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abumrad N. A., el-Maghrabi M. R., Amri E. Z., Lopez E., Grimaldi P. A. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993 Aug 25;268(24):17665–17668. [PubMed] [Google Scholar]
  2. Asch A. To tell the truth: will the real CD36 please stand up? J Lab Clin Med. 1996 Apr;127(4):321–325. doi: 10.1016/s0022-2143(96)90177-8. [DOI] [PubMed] [Google Scholar]
  3. Daviet L., Buckland R., Puente Navazo M. D., McGregor J. L. Identification of an immunodominant functional domain on human CD36 antigen using human-mouse chimaeric proteins and homologue-replacement mutagenesis. Biochem J. 1995 Jan 1;305(Pt 1):221–224. doi: 10.1042/bj3050221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daviet L., Craig A. G., McGregor L., Pinches R., Wild T. F., Berendt A. R., Newbold C. I., McGregor J. L. Characterization of two vaccinia CD36 recombinant-virus-generated monoclonal antibodies (10/5, 13/10): effects on malarial cytoadherence and platelet functions. Eur J Biochem. 1997 Jan 15;243(1-2):344–349. doi: 10.1111/j.1432-1033.1997.0344a.x. [DOI] [PubMed] [Google Scholar]
  5. Glatz J. F., Veerkamp J. H. Postnatal development of palmitate oxidation and mitochondrial enzyme activities in rat cardiac and skeletal muscle. Biochim Biophys Acta. 1982 May 13;711(2):327–335. doi: 10.1016/0005-2760(82)90042-x. [DOI] [PubMed] [Google Scholar]
  6. Glatz J. F., van Breda E., Keizer H. A., de Jong Y. F., Lakey J. R., Rajotte R. V., Thompson A., van der Vusse G. J., Lopaschuk G. D. Rat heart fatty acid-binding protein content is increased in experimental diabetes. Biochem Biophys Res Commun. 1994 Mar 15;199(2):639–646. doi: 10.1006/bbrc.1994.1276. [DOI] [PubMed] [Google Scholar]
  7. Glatz J. F., van der Vusse G. J. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996 Sep;35(3):243–282. doi: 10.1016/s0163-7827(96)00006-9. [DOI] [PubMed] [Google Scholar]
  8. Greenwalt D. E., Lipsky R. H., Ockenhouse C. F., Ikeda H., Tandon N. N., Jamieson G. A. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood. 1992 Sep 1;80(5):1105–1115. [PubMed] [Google Scholar]
  9. Greenwalt D. E., Scheck S. H., Rhinehart-Jones T. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J Clin Invest. 1995 Sep;96(3):1382–1388. doi: 10.1172/JCI118173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harmon C. M., Abumrad N. A. Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J Membr Biol. 1993 Apr;133(1):43–49. doi: 10.1007/BF00231876. [DOI] [PubMed] [Google Scholar]
  11. Harmon C. M., Luce P., Beth A. H., Abumrad N. A. Labeling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J Membr Biol. 1991 May;121(3):261–268. doi: 10.1007/BF01951559. [DOI] [PubMed] [Google Scholar]
  12. Hoogenboom H. R. Designing and optimizing library selection strategies for generating high-affinity antibodies. Trends Biotechnol. 1997 Feb;15(2):62–70. doi: 10.1016/S0167-7799(97)84205-9. [DOI] [PubMed] [Google Scholar]
  13. Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991 Aug 11;19(15):4133–4137. doi: 10.1093/nar/19.15.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kanai Y., Segawa H., Miyamoto K. i., Uchino H., Takeda E., Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998 Sep 11;273(37):23629–23632. doi: 10.1074/jbc.273.37.23629. [DOI] [PubMed] [Google Scholar]
  15. Linssen M. C., van Nieuwenhoven F. A., Duijvestijn A. M., Glatz J. F., van der Vusse G. J. Continuous endothelial cells from adult rat heart. In Vitro Cell Dev Biol Anim. 1993 Aug;29A(8):611–613. doi: 10.1007/BF02634543. [DOI] [PubMed] [Google Scholar]
  16. Luiken J. J., van Nieuwenhoven F. A., America G., van der Vusse G. J., Glatz J. F. Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins. J Lipid Res. 1997 Apr;38(4):745–758. [PubMed] [Google Scholar]
  17. Marks J. D., Hoogenboom H. R., Bonnert T. P., McCafferty J., Griffiths A. D., Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol. 1991 Dec 5;222(3):581–597. doi: 10.1016/0022-2836(91)90498-u. [DOI] [PubMed] [Google Scholar]
  18. Marks J. D., Hoogenboom H. R., Bonnert T. P., McCafferty J., Griffiths A. D., Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol. 1991 Dec 5;222(3):581–597. doi: 10.1016/0022-2836(91)90498-u. [DOI] [PubMed] [Google Scholar]
  19. Matsuno K., Diaz-Ricart M., Montgomery R. R., Aster R. H., Jamieson G. A., Tandon N. N. Inhibition of platelet adhesion to collagen by monoclonal anti-CD36 antibodies. Br J Haematol. 1996 Mar;92(4):960–967. doi: 10.1046/j.1365-2141.1996.422962.x. [DOI] [PubMed] [Google Scholar]
  20. Navazo M. D., Daviet L., Savill J., Ren Y., Leung L. L., McGregor J. L. Identification of a domain (155-183) on CD36 implicated in the phagocytosis of apoptotic neutrophils. J Biol Chem. 1996 Jun 28;271(26):15381–15385. doi: 10.1074/jbc.271.26.15381. [DOI] [PubMed] [Google Scholar]
  21. Pearce S. F., Wu J., Silverstein R. L. A carboxyl terminal truncation mutant of CD36 is secreted and binds thrombospondin: evidence for a single transmembrane domain. Blood. 1994 Jul 15;84(2):384–389. [PubMed] [Google Scholar]
  22. Poole R. C., Halestrap A. P. Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70-kDa membrane glycoprotein of the immunoglobulin superfamily. J Biol Chem. 1997 Jun 6;272(23):14624–14628. doi: 10.1074/jbc.272.23.14624. [DOI] [PubMed] [Google Scholar]
  23. Puente Navazo M. D., Daviet L., Ninio E., McGregor J. L. Identification on human CD36 of a domain (155-183) implicated in binding oxidized low-density lipoproteins (Ox-LDL). Arterioscler Thromb Vasc Biol. 1996 Aug;16(8):1033–1039. doi: 10.1161/01.atv.16.8.1033. [DOI] [PubMed] [Google Scholar]
  24. Rees S., Coote J., Stables J., Goodson S., Harris S., Lee M. G. Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. Biotechniques. 1996 Jan;20(1):102-4, 106, 108-10. doi: 10.2144/96201st05. [DOI] [PubMed] [Google Scholar]
  25. Rose H., Hennecke T., Kammermeier H. Sarcolemmal fatty acid transfer in isolated cardiomyocytes governed by albumin/membrane-lipid partition. J Mol Cell Cardiol. 1990 Aug;22(8):883–892. doi: 10.1016/0022-2828(90)90119-m. [DOI] [PubMed] [Google Scholar]
  26. Schaap F. G., Specht B., van der Vusse G. J., Börchers T., Glatz J. F. One-step purification of rat heart-type fatty acid-binding protein expressed in Escherichia coli. J Chromatogr B Biomed Appl. 1996 Apr 26;679(1-2):61–67. doi: 10.1016/0378-4347(96)00005-9. [DOI] [PubMed] [Google Scholar]
  27. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  28. Spitsberg V. L., Matitashvili E., Gorewit R. C. Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur J Biochem. 1995 Jun 15;230(3):872–878. doi: 10.1111/j.1432-1033.1995.tb20630.x. [DOI] [PubMed] [Google Scholar]
  29. Stremmel W. Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J Clin Invest. 1988 Mar;81(3):844–852. doi: 10.1172/JCI113393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tanaka T., Kawamura K. Isolation of myocardial membrane long-chain fatty acid-binding protein: homology with a rat membrane protein implicated in the binding or transport of long-chain fatty acids. J Mol Cell Cardiol. 1995 Aug;27(8):1613–1622. doi: 10.1016/s0022-2828(95)90557-x. [DOI] [PubMed] [Google Scholar]
  31. Thibert V., Bellucci S., Edelman L., Tandon N. N., Legrand C. Quantitation of platelet glycoprotein IV (CD36) in healthy subjects and in patients with essential thrombocythemia using an immunocapture assay. Thromb Haemost. 1992 Nov 10;68(5):600–605. [PubMed] [Google Scholar]
  32. Van Nieuwenhoven F. A., Luiken J. J., De Jong Y. F., Grimaldi P. A., Van der Vusse G. J., Glatz J. F. Stable transfection of fatty acid translocase (CD36) in a rat heart muscle cell line (H9c2). J Lipid Res. 1998 Oct;39(10):2039–2047. [PubMed] [Google Scholar]
  33. Van Nieuwenhoven F. A., Van der Vusse G. J., Glatz J. F. Membrane-associated and cytoplasmic fatty acid-binding proteins. Lipids. 1996 Mar;31 (Suppl):S223–S227. doi: 10.1007/BF02637080. [DOI] [PubMed] [Google Scholar]
  34. Van Nieuwenhoven F. A., Verstijnen C. P., Abumrad N. A., Willemsen P. H., Van Eys G. J., Van der Vusse G. J., Glatz J. F. Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem Biophys Res Commun. 1995 Feb 15;207(2):747–752. doi: 10.1006/bbrc.1995.1250. [DOI] [PubMed] [Google Scholar]
  35. Vaughan T. J., Williams A. J., Pritchard K., Osbourn J. K., Pope A. R., Earnshaw J. C., McCafferty J., Hodits R. A., Wilton J., Johnson K. S. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol. 1996 Mar;14(3):309–314. doi: 10.1038/nbt0396-309. [DOI] [PubMed] [Google Scholar]
  36. Vork M. M., Glatz J. F., Surtel D. A., Knubben H. J., Van der Vusse G. J. A sandwich enzyme linked immuno-sorbent assay for the determination of rat heart fatty acid-binding protein using the streptavidin-biotin system. Application to tissue and effluent samples from normoxic rat heart perfusion. Biochim Biophys Acta. 1991 Oct 31;1075(3):199–205. doi: 10.1016/0304-4165(91)90267-k. [DOI] [PubMed] [Google Scholar]
  37. Wall S. R., Lopaschuk G. D. Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta. 1989 Nov 6;1006(1):97–103. doi: 10.1016/0005-2760(89)90328-7. [DOI] [PubMed] [Google Scholar]
  38. Winter G., Griffiths A. D., Hawkins R. E., Hoogenboom H. R. Making antibodies by phage display technology. Annu Rev Immunol. 1994;12:433–455. doi: 10.1146/annurev.iy.12.040194.002245. [DOI] [PubMed] [Google Scholar]
  39. van der Vusse G. J., Glatz J. F., Stam H. C., Reneman R. S. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992 Oct;72(4):881–940. doi: 10.1152/physrev.1992.72.4.881. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES