Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 1;337(Pt 3):433–443.

Importance of splicing for prosaposin sorting.

L Madar-Shapiro 1, M Pasmanik-Chor 1, A M Vaccaro 1, T Dinur 1, A Dagan 1, S Gatt 1, M Horowitz 1
PMCID: PMC1219994  PMID: 9895286

Abstract

The prosaposin gene encodes a 70 kDa protein. This protein might either reach the lysosomes and get processed there to four peptides, which are activators of known lysosomal enzymes, or be secreted by cells as a 70 kDa protein, recently anticipated to have several biological activities. The human prosaposin gene has a 9 bp exon (exon 8) that is alternatively spliced, thus encoding three prosaposin forms: one with an extra three amino acid residues, one with an extra two residues and a third form with no extra residues. With the aim of testing whether there is an association between the alternative splicing and the differential sorting of prosaposins, we cloned two human prosaposin cDNA forms in a T7/EMC/vaccinia virus-derived vector and expressed them in human cells. The results indicated that the prosaposin containing the three extra residues accumulated faster and in greater amounts in the medium, whereas the prosaposin with no extra residues was mainly destined for lysosomes. Point mutations created by mutagenesis in vitro in the 9 bp stretch had a diverse effect on prosaposin secretion. When supplied to cells in the medium, both prosaposins were endocytosed and reached the lysosomes, where they were processed to active saposin B and saposin C. The activities of the saposins were monitored qualitatively and quantitatively. Quantitatively, lipids were extracted from the cells, separated on TLC and measured fluorimetrically. Qualitatively, cells were detected by fluorescence microscopy.

Full Text

The Full Text of this article is available as a PDF (316.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuma N., O'Brien J. S., Moser H. W., Kishimoto Y. Stimulation of acid ceramidase activity by saposin D. Arch Biochem Biophys. 1994 Jun;311(2):354–357. doi: 10.1006/abbi.1994.1248. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Burkhardt J. K., Hüttler S., Klein A., Möbius W., Habermann A., Griffiths G., Sandhoff K. Accumulation of sphingolipids in SAP-precursor (prosaposin)-deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAP-precursor. Eur J Cell Biol. 1997 May;73(1):10–18. [PubMed] [Google Scholar]
  4. Campana W. M., Hiraiwa M., Addison K. C., O'Brien J. S. Induction of MAPK phosphorylation by prosaposin and prosaptide in PC12 cells. Biochem Biophys Res Commun. 1996 Dec 24;229(3):706–712. doi: 10.1006/bbrc.1996.1869. [DOI] [PubMed] [Google Scholar]
  5. Christomanou H., Chabás A., Pámpols T., Guardiola A. Activator protein deficient Gaucher's disease. A second patient with the newly identified lipid storage disorder. Klin Wochenschr. 1989 Oct 2;67(19):999–1003. doi: 10.1007/BF01716064. [DOI] [PubMed] [Google Scholar]
  6. Collard M. W., Sylvester S. R., Tsuruta J. K., Griswold M. D. Biosynthesis and molecular cloning of sulfated glycoprotein 1 secreted by rat Sertoli cells: sequence similarity with the 70-kilodalton precursor to sulfatide/GM1 activator. Biochemistry. 1988 Jun 14;27(12):4557–4564. doi: 10.1021/bi00412a050. [DOI] [PubMed] [Google Scholar]
  7. Conzelmann E., Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3979–3983. doi: 10.1073/pnas.75.8.3979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elroy-Stein O., Fuerst T. R., Moss B. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5' sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6126–6130. doi: 10.1073/pnas.86.16.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elroy-Stein O., Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743–6747. doi: 10.1073/pnas.87.17.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujita N., Suzuki K., Vanier M. T., Popko B., Maeda N., Klein A., Henseler M., Sandhoff K., Nakayasu H., Suzuki K. Targeted disruption of the mouse sphingolipid activator protein gene: a complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum Mol Genet. 1996 Jun;5(6):711–725. doi: 10.1093/hmg/5.6.711. [DOI] [PubMed] [Google Scholar]
  12. Fürst W., Sandhoff K. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta. 1992 Jun 5;1126(1):1–16. doi: 10.1016/0005-2760(92)90210-m. [DOI] [PubMed] [Google Scholar]
  13. Fürst W., Schubert J., Machleidt W., Meyer H. E., Sandhoff K. The complete amino-acid sequences of human ganglioside GM2 activator protein and cerebroside sulfate activator protein. Eur J Biochem. 1990 Sep 24;192(3):709–714. doi: 10.1111/j.1432-1033.1990.tb19280.x. [DOI] [PubMed] [Google Scholar]
  14. Harzer K., Paton B. C., Christomanou H., Chatelut M., Levade T., Hiraiwa M., O'Brien J. S. Saposins (sap) A and C activate the degradation of galactosylceramide in living cells. FEBS Lett. 1997 Nov 17;417(3):270–274. doi: 10.1016/s0014-5793(97)01302-1. [DOI] [PubMed] [Google Scholar]
  15. Henseler M., Klein A., Reber M., Vanier M. T., Landrieu P., Sandhoff K. Analysis of a splice-site mutation in the sap-precursor gene of a patient with metachromatic leukodystrophy. Am J Hum Genet. 1996 Jan;58(1):65–74. [PMC free article] [PubMed] [Google Scholar]
  16. Hineno T., Sano A., Kondoh K., Ueno S., Kakimoto Y., Yoshida K. Secretion of sphingolipid hydrolase activator precursor, prosaposin. Biochem Biophys Res Commun. 1991 Apr 30;176(2):668–674. doi: 10.1016/s0006-291x(05)80236-0. [DOI] [PubMed] [Google Scholar]
  17. Hiraiwa M., Martin B. M., Kishimoto Y., Conner G. E., Tsuji S., O'Brien J. S. Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): its mechanism and inhibition by ganglioside. Arch Biochem Biophys. 1997 May 1;341(1):17–24. doi: 10.1006/abbi.1997.9958. [DOI] [PubMed] [Google Scholar]
  18. Hiraiwa M., Taylor E. M., Campana W. M., Darin S. J., O'Brien J. S. Cell death prevention, mitogen-activated protein kinase stimulation, and increased sulfatide concentrations in Schwann cells and oligodendrocytes by prosaposin and prosaptides. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4778–4781. doi: 10.1073/pnas.94.9.4778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ho M. W., O'Brien J. S. Gaucher's disease: deficiency of 'acid' -glucosidase and reconstitution of enzyme activity in vitro. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2810–2813. doi: 10.1073/pnas.68.11.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Igdoura S. A., Rasky A., Morales C. R. Trafficking of sulfated glycoprotein-1 (prosaposin) to lysosomes or to the extracellular space in rat Sertoli cells. Cell Tissue Res. 1996 Mar;283(3):385–394. doi: 10.1007/s004410050549. [DOI] [PubMed] [Google Scholar]
  21. Kondoh K., Hineno T., Sano A., Kakimoto Y. Isolation and characterization of prosaposin from human milk. Biochem Biophys Res Commun. 1991 Nov 27;181(1):286–292. doi: 10.1016/s0006-291x(05)81415-9. [DOI] [PubMed] [Google Scholar]
  22. Kotani Y., Matsuda S., Sakanaka M., Kondoh K., Ueno S., Sano A. Prosaposin facilitates sciatic nerve regeneration in vivo. J Neurochem. 1996 May;66(5):2019–2025. doi: 10.1046/j.1471-4159.1996.66052019.x. [DOI] [PubMed] [Google Scholar]
  23. Kotani Y., Matsuda S., Wen T. C., Sakanaka M., Tanaka J., Maeda N., Kondoh K., Ueno S., Sano A. A hydrophilic peptide comprising 18 amino acid residues of the prosaposin sequence has neurotrophic activity in vitro and in vivo. J Neurochem. 1996 May;66(5):2197–2200. doi: 10.1046/j.1471-4159.1996.66052197.x. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lamontagne S., Potier M. Modulation of human saposin B sphingolipid-binding specificity by alternative splicing. A study with saposin B-derived synthetic peptides. J Biol Chem. 1994 Aug 12;269(32):20528–20532. [PubMed] [Google Scholar]
  26. Lederkremer G. Z., Lodish H. F. An alternatively spliced miniexon alters the subcellular fate of the human asialoglycoprotein receptor H2 subunit. Endoplasmic reticulum retention and degradation or cell surface expression. J Biol Chem. 1991 Jan 15;266(2):1237–1244. [PubMed] [Google Scholar]
  27. Li S. C., Li Y. T. An activator stimulating the enzymic hydrolysis of sphingoglycolipids. J Biol Chem. 1976 Feb 25;251(4):1159–1163. [PubMed] [Google Scholar]
  28. Marchesini S., Preti A., Aleo M. F., Casella A., Dagan A., Gatt S. Synthesis, spectral properties and enzymatic hydrolysis of fluorescent derivatives of cerebroside sulfate containing long-wavelength-emission probes. Chem Phys Lipids. 1990 Mar;53(2-3):165–175. doi: 10.1016/0009-3084(90)90042-p. [DOI] [PubMed] [Google Scholar]
  29. Mehl E., Jatzkewitz H. Eine Cerebrosidsulfatase aus Schweineniere. Hoppe Seylers Z Physiol Chem. 1964;339(1):260–276. [PubMed] [Google Scholar]
  30. Morales C. R., El-Alfy M., Zhao Q., Igdoura S. A. Expression and tissue distribution of rat sulfated glycoprotein-1 (prosaposin). J Histochem Cytochem. 1996 Apr;44(4):327–337. doi: 10.1177/44.4.8601692. [DOI] [PubMed] [Google Scholar]
  31. Moss B., Elroy-Stein O., Mizukami T., Alexander W. A., Fuerst T. R. Product review. New mammalian expression vectors. Nature. 1990 Nov 1;348(6296):91–92. doi: 10.1038/348091a0. [DOI] [PubMed] [Google Scholar]
  32. Nakano T., Sandhoff K., Stümper J., Christomanou H., Suzuki K. Structure of full-length cDNA coding for sulfatide activator, a Co-beta-glucosidase and two other homologous proteins: two alternate forms of the sulfatide activator. J Biochem. 1989 Feb;105(2):152–154. doi: 10.1093/oxfordjournals.jbchem.a122629. [DOI] [PubMed] [Google Scholar]
  33. O'Brien J. S., Carson G. S., Seo H. C., Hiraiwa M., Kishimoto Y. Identification of prosaposin as a neurotrophic factor. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9593–9596. doi: 10.1073/pnas.91.20.9593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Brien J. S., Carson G. S., Seo H. C., Hiraiwa M., Weiler S., Tomich J. M., Barranger J. A., Kahn M., Azuma N., Kishimoto Y. Identification of the neurotrophic factor sequence of prosaposin. FASEB J. 1995 May;9(8):681–685. doi: 10.1096/fasebj.9.8.7768361. [DOI] [PubMed] [Google Scholar]
  35. Pasmanik-Chor M., Elroy-Stein O., Aerts H., Agmon V., Gatt S., Horowitz M. Overexpression of human glucocerebrosidase containing different-sized leaders. Biochem J. 1996 Jul 1;317(Pt 1):81–88. doi: 10.1042/bj3170081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pasmanik-Chor M., Laadan S., Elroy-Stein O., Zimran A., Abrahamov A., Gatt S., Horowitz M. The glucocerebrosidase D409H mutation in Gaucher disease. Biochem Mol Med. 1996 Dec;59(2):125–133. doi: 10.1006/bmme.1996.0077. [DOI] [PubMed] [Google Scholar]
  37. Pasmanik-Chor M., Madar-Shapiro L., Stein E. O., Aerts H., Gatt S., Horowitz M. Expression of mutated glucocerebrosidase alleles in human cells. Hum Mol Genet. 1997 Jun;6(6):887–895. doi: 10.1093/hmg/6.6.887. [DOI] [PubMed] [Google Scholar]
  38. Paton B. C., Schmid B., Kustermann-Kuhn B., Poulos A., Harzer K. Additional biochemical findings in a patient and fetal sibling with a genetic defect in the sphingolipid activator protein (SAP) precursor, prosaposin. Evidence for a deficiency in SAP-1 and for a normal lysosomal neuraminidase. Biochem J. 1992 Jul 15;285(Pt 2):481–488. doi: 10.1042/bj2850481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pinhasi O., Oren M. Expression of the mouse p53 cellular tumor antigen in monkey cells. Mol Cell Biol. 1984 Oct;4(10):2180–2186. doi: 10.1128/mcb.4.10.2180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Reiner O., Dagan O., Horowitz M. Human sphingolipid activator protein-1 and sphingolipid activator protein-2 are encoded by the same gene. J Mol Neurosci. 1989;1(4):225–233. [PubMed] [Google Scholar]
  41. Reiner O., Wilder S., Givol D., Horowitz M. Efficient in vitro and in vivo expression of human glucocerebrosidase cDNA. DNA. 1987 Apr;6(2):101–108. doi: 10.1089/dna.1987.6.101. [DOI] [PubMed] [Google Scholar]
  42. Sano A., Matsuda S., Wen T. C., Kotani Y., Kondoh K., Ueno S., Kakimoto Y., Yoshimura H., Sakanaka M. Protection by prosaposin against ischemia-induced learning disability and neuronal loss. Biochem Biophys Res Commun. 1994 Oct 28;204(2):994–1000. doi: 10.1006/bbrc.1994.2558. [DOI] [PubMed] [Google Scholar]
  43. Schnabel D., Schröder M., Fürst W., Klein A., Hurwitz R., Zenk T., Weber J., Harzer K., Paton B. C., Poulos A. Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem. 1992 Feb 15;267(5):3312–3315. [PubMed] [Google Scholar]
  44. Sprecher-Levy H., Orr-Urtreger A., Lonai P., Horowitz M. Murine prosaposin: expression in the reproductive system of a gene implicated in human genetic diseases. Cell Mol Biol (Noisy-le-grand) 1993 May;39(3):287–299. [PubMed] [Google Scholar]
  45. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vaccaro A. M., Salvioli R., Barca A., Tatti M., Ciaffoni F., Maras B., Siciliano R., Zappacosta F., Amoresano A., Pucci P. Structural analysis of saposin C and B. Complete localization of disulfide bridges. J Biol Chem. 1995 Apr 28;270(17):9953–9960. doi: 10.1074/jbc.270.17.9953. [DOI] [PubMed] [Google Scholar]
  47. Vered A., Eugenio M., Arie D., Augusto P., Sergio M., Shimon G. Fluorescence-based diagnosis of lipid storage diseases by analysis of the culture medium of skin fibroblasts. Clin Chim Acta. 1993 Sep 30;218(2):139–147. doi: 10.1016/0009-8981(93)90178-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES