Abstract
We have shown previously that apolipoprotein A (apoA)-I-containing high-density lipoprotein (HDL) particles are formed by the conjugation of lipid-free apoA-I with lipids derived from other lipoprotein fractions in a process dependent on non-esterified fatty acids, generated by the lipolysis of very-low-density lipoprotein (VLDL) or provided exogenously. In the present study, we show that this process is also able to generate HDL particles containing apoA-II (A-II HDL) and both apoA-I and apoA-II (A-I/A-II HDL). When lipid-free apoA-II was incubated with either VLDLs and lipoprotein lipase or LDLs and sodium oleate, a significant proportion of the apoA-II was recovered in the HDL density fraction. This was associated with the formation of several populations of HDL-sized particles with pre-beta2 electrophoretic mobility, which contained phospholipids and unesterified cholesterol as their main lipid constituents. When both lipid-free apoA-I and lipid-free apoA-II were incubated with LDL and sodium oleate, both apolipoproteins were recovered in HDLs that contained phospholipids and unesterified cholesterol as their main lipids. Two populations of particles had diameters of 7.4 and 10.8 nm and pre-beta2-migration; there was also a population of pre-beta1-migrating particles of diameter 4.7 nm. ApoA-I and apoA-II were both present in the larger HDLs, whereas only apoA-I was present in the smaller particles. Immunoaffinity chromatography on an anti-(apoA-I)-Sepharose column revealed that 10-20% of the apoA-II resided in particles that also contained apoA-I. The majority of the A-I/A-II HDL were present in a population of pre-beta2 particles of 10.8 nm diameter. These results in vitro illustrate a potential mechanism for the formation of HDLs containing both apoA-I and apoA-II.
Full Text
The Full Text of this article is available as a PDF (143.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amouyel P., Isorez D., Bard J. M., Goldman M., Lebel P., Zylberberg G., Fruchart J. C. Parental history of early myocardial infarction is associated with decreased levels of lipoparticle AI in adolescents. Arterioscler Thromb. 1993 Nov;13(11):1640–1644. doi: 10.1161/01.atv.13.11.1640. [DOI] [PubMed] [Google Scholar]
- Barter P. J., Rye K. A. High density lipoproteins and coronary heart disease. Atherosclerosis. 1996 Mar;121(1):1–12. doi: 10.1016/0021-9150(95)05675-0. [DOI] [PubMed] [Google Scholar]
- Barter P. J., Rye K. A. Molecular mechanisms of reverse cholesterol transport. Curr Opin Lipidol. 1996 Apr;7(2):82–87. doi: 10.1097/00041433-199604000-00006. [DOI] [PubMed] [Google Scholar]
- Bekaert E. D., Alaupovic P., Knight-Gibson C., Norum R. A., Laux M. J., Ayrault-Jarrier M. Isolation and partial characterization of lipoprotein A-II (LP-A-II) particles of human plasma. Biochim Biophys Acta. 1992 Jun 5;1126(1):105–113. doi: 10.1016/0005-2760(92)90223-i. [DOI] [PubMed] [Google Scholar]
- Bielicki J. K., Johnson W. J., Weinberg R. B., Glick J. M., Rothblat G. H. Efflux of lipid from fibroblasts to apolipoproteins: dependence on elevated levels of cellular unesterified cholesterol. J Lipid Res. 1992 Nov;33(11):1699–1709. [PubMed] [Google Scholar]
- Cheung M. C., Albers J. J. Characterization of lipoprotein particles isolated by immunoaffinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-II. J Biol Chem. 1984 Oct 10;259(19):12201–12209. [PubMed] [Google Scholar]
- Chung B. H., Tallis G. A., Cho B. H., Segrest J. P., Henkin Y. Lipolysis-induced partitioning of free fatty acids to lipoproteins: effect on the biological properties of free fatty acids. J Lipid Res. 1995 Sep;36(9):1956–1970. [PubMed] [Google Scholar]
- Clay M. A., Barter P. J. Formation of new HDL particles from lipid-free apolipoprotein A-I. J Lipid Res. 1996 Aug;37(8):1722–1732. [PubMed] [Google Scholar]
- Clay M. A., Newnham H. H., Barter P. J. Hepatic lipase promotes a loss of apolipoprotein A-I from triglyceride-enriched human high density lipoproteins during incubation in vitro. Arterioscler Thromb. 1991 Mar-Apr;11(2):415–422. doi: 10.1161/01.atv.11.2.415. [DOI] [PubMed] [Google Scholar]
- Clay M. A., Rye K. A., Barter P. J. Evidence in vitro that hepatic lipase reduces the concentration of apolipoprotein A-I in rabbit high-density lipoproteins. Biochim Biophys Acta. 1990 May 1;1044(1):50–56. doi: 10.1016/0005-2760(90)90217-l. [DOI] [PubMed] [Google Scholar]
- Daerr W. H., Minzlaff U., Greten H. Quantitative determination of apolipoprotein A-I in high-density lipoproteins and 'free' apolipoprotein A-I by two-dimensional agarose gel lipoprotein-'rocket' immunoelectrophoresis of human serum. Biochim Biophys Acta. 1986 Nov 14;879(2):134–139. doi: 10.1016/0005-2760(86)90095-0. [DOI] [PubMed] [Google Scholar]
- Edelstein C., Halari M., Scanu A. M. On the mechanism of the displacement of apolipoprotein A-I by apolipoprotein A-II from the high density lipoprotein surface. Effect of concentration and molecular forms of apolipoprotein A-II. J Biol Chem. 1982 Jun 25;257(12):7189–7195. [PubMed] [Google Scholar]
- Forte T. M., Bielicki J. K., Goth-Goldstein R., Selmek J., McCall M. R. Recruitment of cell phospholipids and cholesterol by apolipoproteins A-II and A-I: formation of nascent apolipoprotein-specific HDL that differ in size, phospholipid composition, and reactivity with LCAT. J Lipid Res. 1995 Jan;36(1):148–157. [PubMed] [Google Scholar]
- Gordon D. J., Knoke J., Probstfield J. L., Superko R., Tyroler H. A. High-density lipoprotein cholesterol and coronary heart disease in hypercholesterolemic men: the Lipid Research Clinics Coronary Primary Prevention Trial. Circulation. 1986 Dec;74(6):1217–1225. doi: 10.1161/01.cir.74.6.1217. [DOI] [PubMed] [Google Scholar]
- Hamilton R. L., Williams M. C., Fielding C. J., Havel R. J. Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest. 1976 Sep;58(3):667–680. doi: 10.1172/JCI108513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara H., Yokoyama S. Role of apolipoproteins in cholesterol efflux from macrophages to lipid microemulsion: proposal of a putative model for the pre-beta high-density lipoprotein pathway. Biochemistry. 1992 Feb 25;31(7):2040–2046. doi: 10.1021/bi00122a021. [DOI] [PubMed] [Google Scholar]
- Ikewaki K., Zech L. A., Kindt M., Brewer H. B., Jr, Rader D. J. Apolipoprotein A-II production rate is a major factor regulating the distribution of apolipoprotein A-I among HDL subclasses LpA-I and LpA-I:A-II in normolipidemic humans. Arterioscler Thromb Vasc Biol. 1995 Mar;15(3):306–312. doi: 10.1161/01.atv.15.3.306. [DOI] [PubMed] [Google Scholar]
- Kinnunen P. K., Huttunen J. K., Ehnholm C. Properties of purified bovine milk lipoprotein lipase. Biochim Biophys Acta. 1976 Dec 20;450(3):342–351. doi: 10.1016/0005-2760(76)90007-2. [DOI] [PubMed] [Google Scholar]
- Liang H. Q., Rye K. A., Barter P. J. Dissociation of lipid-free apolipoprotein A-I from high density lipoproteins. J Lipid Res. 1994 Jul;35(7):1187–1199. [PubMed] [Google Scholar]
- Lusa S., Jauhiainen M., Metso J., Somerharju P., Ehnholm C. The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion. Biochem J. 1996 Jan 1;313(Pt 1):275–282. doi: 10.1042/bj3130275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manninen V., Elo M. O., Frick M. H., Haapa K., Heinonen O. P., Heinsalmi P., Helo P., Huttunen J. K., Kaitaniemi P., Koskinen P. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA. 1988 Aug 5;260(5):641–651. [PubMed] [Google Scholar]
- Marsh J. B. Apoproteins of the lipoproteins in a nonrecirculating perfusate of rat liver. J Lipid Res. 1976 Jan;17(1):85–89. [PubMed] [Google Scholar]
- Musliner T. A., Long M. D., Forte T. M., Nichols A. V., Gong E. L., Blanche P. J., Krauss R. M. Dissociation of high density lipoprotein precursors from apolipoprotein B-containing lipoproteins in the presence of unesterified fatty acids and a source of apolipoprotein A-I. J Lipid Res. 1991 Jun;32(6):917–933. [PubMed] [Google Scholar]
- Neary R. H., Gowland E. Stability of free apolipoprotein A-1 concentration in serum, and its measurement in normal and hyperlipidemic subjects. Clin Chem. 1987 Jul;33(7):1163–1169. [PubMed] [Google Scholar]
- Norum R. A., Lakier J. B., Goldstein S., Angel A., Goldberg R. B., Block W. D., Noffze D. K., Dolphin P. J., Edelglass J., Bogorad D. D. Familial deficiency of apolipoproteins A-I and C-III and precocious coronary-artery disease. N Engl J Med. 1982 Jun 24;306(25):1513–1519. doi: 10.1056/NEJM198206243062503. [DOI] [PubMed] [Google Scholar]
- Osborne J. C., Jr Delipidation of plasma lipoproteins. Methods Enzymol. 1986;128:213–222. doi: 10.1016/0076-6879(86)28069-6. [DOI] [PubMed] [Google Scholar]
- Plump A. S., Scott C. J., Breslow J. L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9607–9611. doi: 10.1073/pnas.91.20.9607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pussinen P., Jauhianinen M., Metso J., Tyynelä J., Ehnholm C. Pig plasma phospholipid transfer protein facilitates HDL interconversion. J Lipid Res. 1995 May;36(5):975–985. [PubMed] [Google Scholar]
- Pászty C., Maeda N., Verstuyft J., Rubin E. M. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest. 1994 Aug;94(2):899–903. doi: 10.1172/JCI117412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosseneu M., Van Tornout P., Lievens M. J., Assmann G. Displacement of the human apoprotein A-I by the human apoprotein A-II from complexes of (apoprotein A-I)-phosphatidylcholine-cholesterol. Eur J Biochem. 1981 Jul;117(2):347–352. doi: 10.1111/j.1432-1033.1981.tb06344.x. [DOI] [PubMed] [Google Scholar]
- Rye K. A., Garrety K. H., Barter P. J. Changes in the size of reconstituted high density lipoproteins during incubation with cholesteryl ester transfer protein: the role of apolipoproteins. J Lipid Res. 1992 Feb;33(2):215–224. [PubMed] [Google Scholar]
- Rye K. A., Garrety K. H., Barter P. J. Preparation and characterization of spheroidal, reconstituted high-density lipoproteins with apolipoprotein A-I only or with apolipoprotein A-I and A-II. Biochim Biophys Acta. 1993 Apr 23;1167(3):316–325. doi: 10.1016/0005-2760(93)90235-2. [DOI] [PubMed] [Google Scholar]
- Rye K. A., Hime N. J., Barter P. J. Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. J Biol Chem. 1997 Feb 14;272(7):3953–3960. doi: 10.1074/jbc.272.7.3953. [DOI] [PubMed] [Google Scholar]
- Schaefer E. J., Heaton W. H., Wetzel M. G., Brewer H. B., Jr Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis. 1982 Jan-Feb;2(1):16–26. doi: 10.1161/01.atv.2.1.16. [DOI] [PubMed] [Google Scholar]
- Schultz J. R., Rubin E. M. The properties of HDL in genetically engineered mice. Curr Opin Lipidol. 1994 Apr;5(2):126–137. doi: 10.1097/00041433-199404000-00009. [DOI] [PubMed] [Google Scholar]
- Schultz J. R., Verstuyft J. G., Gong E. L., Nichols A. V., Rubin E. M. Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature. 1993 Oct 21;365(6448):762–764. doi: 10.1038/365762a0. [DOI] [PubMed] [Google Scholar]
- Sparks D. L., Phillips M. C. Quantitative measurement of lipoprotein surface charge by agarose gel electrophoresis. J Lipid Res. 1992 Jan;33(1):123–130. [PubMed] [Google Scholar]
- Tam S. P., Breckenridge W. C. Apolipoprotein and lipid distribution between vesicles and HDL-like particles formed during lipolysis of human very low density lipoproteins by perfused rat heart. J Lipid Res. 1983 Oct;24(10):1343–1357. [PubMed] [Google Scholar]
- Vigne J. L., Havel R. J. Metabolism of apolipoprotein A-I of chylomicrons in rats and humans. Can J Biochem. 1981 Aug;59(8):613–618. doi: 10.1139/o81-085. [DOI] [PubMed] [Google Scholar]