Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 1;337(Pt 3):483–490.

N-Acetylsphingosine stimulates phosphatidylglycerolphosphate synthase activity in H9c2 cardiac cells.

F Y Xu 1, S L Kelly 1, G M Hatch 1
PMCID: PMC1219999  PMID: 9895291

Abstract

Cardiolipin and phosphatidylglycerol biosynthesis were examined in H9c2 cells incubated with short-chain ceramides. Incubation of cells with N-acetylsphingosine or N-hexanoylsphingosine stimulated [1, 3-3H]glycerol incorporation into phosphatidylglycerol and cardiolipin, with N-acetylsphingosine having the greater effect. The mechanism for the ceramide-mediated stimulation of de novo phosphatidylglycerol and cardiolipin biosynthesis appeared to be an increase in the activity of phosphatidylglycerolphosphate synthase, the committed step of phosphatidylglycerol and cardiolipin biosynthesis. The presence of the potent protein phosphatase inhibitors calyculin A or okadaic acid attenuated the N-acetylsphingosine-mediated stimulation of phosphatidylglycerolphosphate synthase activity and of phosphatidylglycerol and cardiolipin biosynthesis, indicating the involvement of a ceramide-activated protein phosphatase(s). The presence of 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) stimulated enzyme activity and [1,3-3H]glycerol incorporation into phosphatidylglycerol and cardiolipin. The effects of CPT-cAMP and N-acetylsphingosine on phosphatidylglycerol and cardiolipin biosynthesis and on phosphatidylglycerolphosphate synthase activity were additive. Phosphatidylglycerol biosynthesis from sn-[14C]glycerol 3-phosphate in permeabilized H9c2 cells was stimulated by preincubation with N-acetylsphingosine, and this was attenuated by okadaic acid. N-Acetylsphingosine treatment of cells elevated mitochondrial phospholipase A2 activity. Since the pool sizes of phosphatidylglycerol and cardiolipin were unaltered in these cells, the observed increase in phosphatidylglycerolphosphate synthase activity may be a compensatory mechanism for the N-acetylsphingosine-mediated elevation of mitochondrial phospholipase A2 activity. Finally, addition of tumour necrosis factor alpha to H9c2 cells resulted in an elevation of both phosphatidylglycerolphosphate synthase and phospholipase A2 activities. The results suggest that phosphatidylglycerol and cardiolipin metabolism in H9c2 cells may be regulated by intracellular ceramide signalling.

Full Text

The Full Text of this article is available as a PDF (141.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballou L. R. Sphingolipids and cell function. Immunol Today. 1992 Sep;13(9):339–341. doi: 10.1016/0167-5699(92)90167-6. [DOI] [PubMed] [Google Scholar]
  2. Cao S. G., Cheng P., Angel A., Hatch G. M. Thyroxine stimulates phosphatidylglycerolphosphate synthase activity in rat heart mitochondria. Biochim Biophys Acta. 1995 May 17;1256(2):241–244. doi: 10.1016/0005-2760(95)00035-b. [DOI] [PubMed] [Google Scholar]
  3. Carman G. M., Belunis C. J. Phosphatidylglycerophosphate synthase activity in Saccharomyces cerevisiae. Can J Microbiol. 1983 Oct;29(10):1452–1457. doi: 10.1139/m83-222. [DOI] [PubMed] [Google Scholar]
  4. Carman G. M., Kelley M. J. CDPdiacylglycerol synthase from yeast. Methods Enzymol. 1992;209:242–247. doi: 10.1016/0076-6879(92)09030-7. [DOI] [PubMed] [Google Scholar]
  5. Daum G. Lipids of mitochondria. Biochim Biophys Acta. 1985 Jun 12;822(1):1–42. doi: 10.1016/0304-4157(85)90002-4. [DOI] [PubMed] [Google Scholar]
  6. Dobrowsky R. T., Kamibayashi C., Mumby M. C., Hannun Y. A. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem. 1993 Jul 25;268(21):15523–15530. [PubMed] [Google Scholar]
  7. Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem. 1997;66:199–232. doi: 10.1146/annurev.biochem.66.1.199. [DOI] [PubMed] [Google Scholar]
  8. Dressler K. A., Mathias S., Kolesnick R. N. Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science. 1992 Mar 27;255(5052):1715–1718. doi: 10.1126/science.1313189. [DOI] [PubMed] [Google Scholar]
  9. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  10. Gudz T. I., Tserng K. Y., Hoppel C. L. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997 Sep 26;272(39):24154–24158. doi: 10.1074/jbc.272.39.24154. [DOI] [PubMed] [Google Scholar]
  11. Gómez-Muñoz A. Modulation of cell signalling by ceramides. Biochim Biophys Acta. 1998 Mar 6;1391(1):92–109. doi: 10.1016/s0005-2760(97)00201-4. [DOI] [PubMed] [Google Scholar]
  12. Haddad E. B., Rousell J., Lindsay M. A., Barnes P. J. Synergy between tumor necrosis factor alpha and interleukin 1beta in inducing transcriptional down-regulation of muscarinic M2 receptor gene expression. Involvement of protein kinase A and ceramide pathways. J Biol Chem. 1996 Dec 20;271(51):32586–32592. doi: 10.1074/jbc.271.51.32586. [DOI] [PubMed] [Google Scholar]
  13. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  14. Hatch G. M., Cao S. G., Angel A. Decrease in cardiac phosphatidylglycerol in streptozotocin-induced diabetic rats does not affect cardiolipin biosynthesis: evidence for distinct pools of phosphatidylglycerol in the heart. Biochem J. 1995 Mar 15;306(Pt 3):759–764. doi: 10.1042/bj3060759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hatch G. M. Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells (Review). Int J Mol Med. 1998 Jan;1(1):33–41. doi: 10.3892/ijmm.1.1.33. [DOI] [PubMed] [Google Scholar]
  16. Hatch G. M., McClarty G. Regulation of cardiolipin biosynthesis in H9c2 cardiac myoblasts by cytidine 5'-triphosphate. J Biol Chem. 1996 Oct 18;271(42):25810–25816. doi: 10.1074/jbc.271.42.25810. [DOI] [PubMed] [Google Scholar]
  17. Hoch F. L. Cardiolipins and biomembrane function. Biochim Biophys Acta. 1992 Mar 26;1113(1):71–133. doi: 10.1016/0304-4157(92)90035-9. [DOI] [PubMed] [Google Scholar]
  18. Hostetler K. Y., Van den Bosch H., Van Deenen L. L. Biosynthesis of cardiolipin in liver mitochondria. Biochim Biophys Acta. 1971 Jun 8;239(1):113–119. doi: 10.1016/0005-2760(71)90201-3. [DOI] [PubMed] [Google Scholar]
  19. KIYASU J. Y., PIERINGER R. A., PAULUS H., KENNEDY E. P. The biosynthesis of phosphatidylglycerol. J Biol Chem. 1963 Jul;238:2293–2298. [PubMed] [Google Scholar]
  20. Kim M. Y., Linardic C., Obeid L., Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem. 1991 Jan 5;266(1):484–489. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lee J. Y., Hannun Y. A., Obeid L. M. Ceramide inactivates cellular protein kinase Calpha. J Biol Chem. 1996 May 31;271(22):13169–13174. doi: 10.1074/jbc.271.22.13169. [DOI] [PubMed] [Google Scholar]
  23. MacDonald P. M., McMurray W. C. Partial purification and properties of mammalian phosphatidylglycerophosphatase. Biochim Biophys Acta. 1980 Oct 6;620(1):80–89. doi: 10.1016/0005-2760(80)90187-3. [DOI] [PubMed] [Google Scholar]
  24. Mathias S., Dressler K. A., Kolesnick R. N. Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10009–10013. doi: 10.1073/pnas.88.22.10009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Merrill A. H., Jr, Stevens V. L. Modulation of protein kinase C and diverse cell functions by sphingosine--a pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim Biophys Acta. 1989 Feb 9;1010(2):131–139. doi: 10.1016/0167-4889(89)90152-3. [DOI] [PubMed] [Google Scholar]
  26. Okazaki T., Bell R. M., Hannun Y. A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem. 1989 Nov 15;264(32):19076–19080. [PubMed] [Google Scholar]
  27. Paradies G., Ruggiero F. M., Gadaleta M. N., Quagliariello E. The effect of aging and acetyl-L-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria. Biochim Biophys Acta. 1992 Jan 31;1103(2):324–326. doi: 10.1016/0005-2736(92)90103-s. [DOI] [PubMed] [Google Scholar]
  28. Patton-Vogt J. L., Griac P., Sreenivas A., Bruno V., Dowd S., Swede M. J., Henry S. A. Role of the yeast phosphatidylinositol/phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1 regulation. J Biol Chem. 1997 Aug 15;272(33):20873–20883. doi: 10.1074/jbc.272.33.20873. [DOI] [PubMed] [Google Scholar]
  29. Petit P. X., Lecoeur H., Zorn E., Dauguet C., Mignotte B., Gougeon M. L. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol. 1995 Jul;130(1):157–167. doi: 10.1083/jcb.130.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peña L. A., Fuks Z., Kolesnick R. Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol. 1997 Mar 7;53(5):615–621. doi: 10.1016/s0006-2952(96)00834-9. [DOI] [PubMed] [Google Scholar]
  31. Poorthuis B. J., Yazaki P. J., Hostetler K. Y. An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res. 1976 Jul;17(4):433–437. [PubMed] [Google Scholar]
  32. Quillet-Mary A., Jaffrézou J. P., Mansat V., Bordier C., Naval J., Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997 Aug 22;272(34):21388–21395. doi: 10.1074/jbc.272.34.21388. [DOI] [PubMed] [Google Scholar]
  33. Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
  34. Spiegel S., Merrill A. H., Jr Sphingolipid metabolism and cell growth regulation. FASEB J. 1996 Oct;10(12):1388–1397. doi: 10.1096/fasebj.10.12.8903509. [DOI] [PubMed] [Google Scholar]
  35. Spinedi A., Amendola A., Di Bartolomeo S., Piacentini M. Ceramide-induced apoptosis is mediated by caspase activation independently from retinoblastoma protein post-translational modification. Biochem Biophys Res Commun. 1998 Feb 24;243(3):852–857. doi: 10.1006/bbrc.1998.8184. [DOI] [PubMed] [Google Scholar]
  36. Veldman R. J., Klappe K., Hoekstra D., Kok J. W. Metabolism and apoptotic properties of elevated ceramide in HT29rev cells. Biochem J. 1998 Apr 15;331(Pt 2):563–569. doi: 10.1042/bj3310563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wiegmann K., Schütze S., Machleidt T., Witte D., Krönke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell. 1994 Sep 23;78(6):1005–1015. doi: 10.1016/0092-8674(94)90275-5. [DOI] [PubMed] [Google Scholar]
  38. Xu F. Y., Hatch G. M. Cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol import into mitochondria through mitochondrial membrane contact sites in permeabilized rat liver hepatocytes. Biochem Biophys Res Commun. 1997 Mar 6;232(1):261–265. doi: 10.1006/bbrc.1997.6270. [DOI] [PubMed] [Google Scholar]
  39. Xu F. Y., Taylor W. A., Hatch G. M. Lysophosphatidylcholine inhibits cardiolipin biosynthesis in H9c2 cardiac myoblast cells. Arch Biochem Biophys. 1998 Jan 15;349(2):341–348. doi: 10.1006/abbi.1997.0460. [DOI] [PubMed] [Google Scholar]
  40. Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zamzami N., Marchetti P., Castedo M., Zanin C., Vayssière J. L., Petit P. X., Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995 May 1;181(5):1661–1672. doi: 10.1084/jem.181.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang P., Liu B., Jenkins G. M., Hannun Y. A., Obeid L. M. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem. 1997 Apr 11;272(15):9609–9612. doi: 10.1074/jbc.272.15.9609. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES