Abstract
The gene for human involucrin (hINV) is selectively expressed in stratifying epithelial cells lining external body surfaces. Previously, we characterized the hINV promoter 5' distal regulatory region (DRR) located between nt -2473 and -2088 upstream of the transcription start site. This region is required for optimal hINV gene expression. The DRR contains weak and strong activator elements. The strong activator comprises AP1- and Sp1-binding sites that combine to drive high-level promoter expression in human keratinocytes. Here we show that the hINV promoter is expressed in a cell-specific manner in vitro and that the DRR contains elements that are partly responsible for cell-type-specific expression of hINV. hINV promoter activity is barely detectable in 3T3 fibroblasts or HEK-293 human embryonic kidney cells. Reporter plasmids containing the full-length promoter or the isolated DRR can, however, be activated in 3T3 and HEK-293 cells by co-transfection with a plasmid encoding the transcription factor Sp1. Consistently with the lower hINV promoter activity, immunoblotting studies indicate that Sp1 protein levels are lower in 3T3 and HEK-293 cells than in human epidermal keratinocytes. Increased Sp1 protein in transfected 3T3 cells and HEK-293 cells correlates with increased promoter activity. In addition, Sp1 transfection activates the expression of the endogenous gene for hINV in HEK-293 cells. These studies suggest that Sp1 might have a role in cell-specific expression of hINV.
Full Text
The Full Text of this article is available as a PDF (130.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apt D., Watts R. M., Suske G., Bernard H. U. High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology. 1996 Oct 1;224(1):281–291. doi: 10.1006/viro.1996.0530. [DOI] [PubMed] [Google Scholar]
- Banks-Schlegel S., Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981 Sep;90(3):732–737. doi: 10.1083/jcb.90.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banks E. B., Crish J. F., Welter J. F., Eckert R. L. Characterization of human involucrin promoter distal regulatory region transcriptional activator elements-a role for Sp1 and AP1 binding sites. Biochem J. 1998 Apr 1;331(Pt 1):61–68. doi: 10.1042/bj3310061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behrens J., Löwrick O., Klein-Hitpass L., Birchmeier W. The E-cadherin promoter: functional analysis of a G.C-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11495–11499. doi: 10.1073/pnas.88.24.11495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briggs M. R., Kadonaga J. T., Bell S. P., Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science. 1986 Oct 3;234(4772):47–52. doi: 10.1126/science.3529394. [DOI] [PubMed] [Google Scholar]
- Byrne C., Fuchs E. Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice. Mol Cell Biol. 1993 Jun;13(6):3176–3190. doi: 10.1128/mcb.13.6.3176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casatorres J., Navarro J. M., Blessing M., Jorcano J. L. Analysis of the control of expression and tissue specificity of the keratin 5 gene, characteristic of basal keratinocytes. Fundamental role of an AP-1 element. J Biol Chem. 1994 Aug 12;269(32):20489–20496. [PubMed] [Google Scholar]
- Chakravarty R., Rong X. H., Rice R. H. Phorbol ester-stimulated phosphorylation of keratinocyte transglutaminase in the membrane anchorage region. Biochem J. 1990 Oct 1;271(1):25–30. doi: 10.1042/bj2710025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen T. T., Wu R. L., Castro-Munozledo F., Sun T. T. Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells. Mol Cell Biol. 1997 Jun;17(6):3056–3064. doi: 10.1128/mcb.17.6.3056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowley S., Paterson H., Kemp P., Marshall C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994 Jun 17;77(6):841–852. doi: 10.1016/0092-8674(94)90133-3. [DOI] [PubMed] [Google Scholar]
- Crish J. F., Howard J. M., Zaim T. M., Murthy S., Eckert R. L. Tissue-specific and differentiation-appropriate expression of the human involucrin gene in transgenic mice: an abnormal epidermal phenotype. Differentiation. 1993 Jul;53(3):191–200. doi: 10.1111/j.1432-0436.1993.tb00708.x. [DOI] [PubMed] [Google Scholar]
- DiSepio D., Jones A., Longley M. A., Bundman D., Rothnagel J. A., Roop D. R. The proximal promoter of the mouse loricrin gene contains a functional AP-1 element and directs keratinocyte-specific but not differentiation-specific expression. J Biol Chem. 1995 May 5;270(18):10792–10799. doi: 10.1074/jbc.270.18.10792. [DOI] [PubMed] [Google Scholar]
- Djian P., Phillips M., Easley K., Huang E., Simon M., Rice R. H., Green H. The involucrin genes of the mouse and the rat: study of their shared repeats. Mol Biol Evol. 1993 Nov;10(6):1136–1149. doi: 10.1093/oxfordjournals.molbev.a040069. [DOI] [PubMed] [Google Scholar]
- Eckert R. L., Crish J. F., Robinson N. A. The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev. 1997 Apr;77(2):397–424. doi: 10.1152/physrev.1997.77.2.397. [DOI] [PubMed] [Google Scholar]
- Eckert R. L. Structure, function, and differentiation of the keratinocyte. Physiol Rev. 1989 Oct;69(4):1316–1346. doi: 10.1152/physrev.1989.69.4.1316. [DOI] [PubMed] [Google Scholar]
- Eckert R. L., Yaffe M. B., Crish J. F., Murthy S., Rorke E. A., Welter J. F. Involucrin--structure and role in envelope assembly. J Invest Dermatol. 1993 May;100(5):613–617. doi: 10.1111/1523-1747.ep12472288. [DOI] [PubMed] [Google Scholar]
- Fischer D. F., Gibbs S., van De Putte P., Backendorf C. Interdependent transcription control elements regulate the expression of the SPRR2A gene during keratinocyte terminal differentiation. Mol Cell Biol. 1996 Oct;16(10):5365–5374. doi: 10.1128/mcb.16.10.5365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill G., Pascal E., Tseng Z. H., Tjian R. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):192–196. doi: 10.1073/pnas.91.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass C., Fuchs E. Isolation, sequence, and differential expression of a human K7 gene in simple epithelial cells. J Cell Biol. 1988 Oct;107(4):1337–1350. doi: 10.1083/jcb.107.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greco M. A., Lorand L., Lane W. S., Baden H. P., Parameswaran K. N., Kvedar J. C. The pancornulins: a group of small proline rich-related cornified envelope precursors with bifunctional capabilities in isopeptide bond formation. J Invest Dermatol. 1995 Feb;104(2):204–210. doi: 10.1111/1523-1747.ep12612759. [DOI] [PubMed] [Google Scholar]
- Gualberto A., Baldwin A. S., Jr p53 and Sp1 interact and cooperate in the tumor necrosis factor-induced transcriptional activation of the HIV-1 long terminal repeat. J Biol Chem. 1995 Aug 25;270(34):19680–19683. doi: 10.1074/jbc.270.34.19680. [DOI] [PubMed] [Google Scholar]
- Gégonne A., Bosselut R., Bailly R. A., Ghysdael J. Synergistic activation of the HTLV1 LTR Ets-responsive region by transcription factors Ets1 and Sp1. EMBO J. 1993 Mar;12(3):1169–1178. doi: 10.1002/j.1460-2075.1993.tb05758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadonaga J. T., Carner K. R., Masiarz F. R., Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987 Dec 24;51(6):1079–1090. doi: 10.1016/0092-8674(87)90594-0. [DOI] [PubMed] [Google Scholar]
- Kim S. Y., Chung S. I., Steinert P. M. Highly active soluble processed forms of the transglutaminase 1 enzyme in epidermal keratinocytes. J Biol Chem. 1995 Jul 28;270(30):18026–18035. doi: 10.1074/jbc.270.30.18026. [DOI] [PubMed] [Google Scholar]
- Kulesh D. A., Oshima R. G. Cloning of the human keratin 18 gene and its expression in nonepithelial mouse cells. Mol Cell Biol. 1988 Apr;8(4):1540–1550. doi: 10.1128/mcb.8.4.1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leask A., Rosenberg M., Vassar R., Fuchs E. Regulation of a human epidermal keratin gene: sequences and nuclear factors involved in keratinocyte-specific transcription. Genes Dev. 1990 Nov;4(11):1985–1998. doi: 10.1101/gad.4.11.1985. [DOI] [PubMed] [Google Scholar]
- Lee J. H., Jang S. I., Yang J. M., Markova N. G., Steinert P. M. The proximal promoter of the human transglutaminase 3 gene. Stratified squamous epithelial-specific expression in cultured cells is mediated by binding of Sp1 and ets transcription factors to a proximal promoter element. J Biol Chem. 1996 Feb 23;271(8):4561–4568. [PubMed] [Google Scholar]
- Leggett R. W., Armstrong S. A., Barry D., Mueller C. R. Sp1 is phosphorylated and its DNA binding activity down-regulated upon terminal differentiation of the liver. J Biol Chem. 1995 Oct 27;270(43):25879–25884. doi: 10.1074/jbc.270.43.25879. [DOI] [PubMed] [Google Scholar]
- Merika M., Orkin S. H. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Krüppel family proteins Sp1 and EKLF. Mol Cell Biol. 1995 May;15(5):2437–2447. doi: 10.1128/mcb.15.5.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy S., Crish J. F., Zaim T. M., Eckert R. L. A dual role for involucrin in the epidermis-ultrastructural localization in epidermis and hair follicle in humans and transgenic mice. J Struct Biol. 1993 Jul-Aug;111(1):68–76. doi: 10.1006/jsbi.1993.1037. [DOI] [PubMed] [Google Scholar]
- Phillips M. A., Stewart B. E., Qin Q., Chakravarty R., Floyd E. E., Jetten A. M., Rice R. H. Primary structure of keratinocyte transglutaminase. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9333–9337. doi: 10.1073/pnas.87.23.9333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
- Rice R. H., Rong X. H., Chakravarty R. Proteolytic release of keratinocyte transglutaminase. Biochem J. 1990 Jan 15;265(2):351–357. doi: 10.1042/bj2650351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice R. H., Steinmann K. E., deGraffenried L. A., Qin Q., Taylor N., Schlegel R. Elevation of cell cycle control proteins during spontaneous immortalization of human keratinocytes. Mol Biol Cell. 1993 Feb;4(2):185–194. doi: 10.1091/mbc.4.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson N. A., LaCelle P. T., Eckert R. L. Involucrin is a covalently crosslinked constituent of highly purified epidermal corneocytes: evidence for a common pattern of involucrin crosslinking in vivo and in vitro. J Invest Dermatol. 1996 Jul;107(1):101–107. doi: 10.1111/1523-1747.ep12298323. [DOI] [PubMed] [Google Scholar]
- Saffer J. D., Jackson S. P., Annarella M. B. Developmental expression of Sp1 in the mouse. Mol Cell Biol. 1991 Apr;11(4):2189–2199. doi: 10.1128/mcb.11.4.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi M., Tezuka T., Kakegawa H., Katunuma N. Linkage between phosphorylated cystatin alpha and filaggrin by epidermal transglutaminase as a model of cornified envelope and inhibition of cathepsin L activity by cornified envelope and the conjugated cystatin alpha. FEBS Lett. 1994 Mar 7;340(3):173–176. doi: 10.1016/0014-5793(94)80131-2. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Tezuka T., Katunuma N. Phosphorylated cystatin alpha is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope. FEBS Lett. 1992 Aug 10;308(1):79–82. doi: 10.1016/0014-5793(92)81055-q. [DOI] [PubMed] [Google Scholar]
- Udvadia A. J., Templeton D. J., Horowitz J. M. Functional interactions between the retinoblastoma (Rb) protein and Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3953–3957. doi: 10.1073/pnas.92.9.3953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassar R., Rosenberg M., Ross S., Tyner A., Fuchs E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1563–1567. doi: 10.1073/pnas.86.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welter J. F., Crish J. F., Agarwal C., Eckert R. L. Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J Biol Chem. 1995 May 26;270(21):12614–12622. doi: 10.1074/jbc.270.21.12614. [DOI] [PubMed] [Google Scholar]
- Welter J. F., Gali H., Crish J. F., Eckert R. L. Regulation of human involucrin promoter activity by POU domain proteins. J Biol Chem. 1996 Jun 21;271(25):14727–14733. doi: 10.1074/jbc.271.25.14727. [DOI] [PubMed] [Google Scholar]
- Yaffe M. B., Murthy S., Eckert R. L. Evidence that involucrin is a covalently linked constituent of highly purified cultured keratinocyte cornified envelopes. J Invest Dermatol. 1993 Jan;100(1):3–9. doi: 10.1111/1523-1747.ep12349857. [DOI] [PubMed] [Google Scholar]