Abstract
The production of superoxide radicals (O2(-).) and the activities of ferricyanide reductase and cytochrome c reductase were investigated in peroxisomal membranes from pea (Pisum sativum L.) leaves using NADH and NADPH as electron donors. The generation of O2(-). by peroxisomal membranes was also assayed in native polyacrylamide gels using an in situ staining method with NitroBlue Tetrazolium (NBT). When peroxisomal membranes were assayed under native conditions using NADH or NADPH as inducer, two different O2(-).-dependent Formazan Blue bands were detected. Analysis by SDS/PAGE of these bands demonstrated that the NADH-induced NBT reduction band contained several polypeptides (PMP32, PMP61, PMP56 and PMP18, where PMP is peroxisomal membrane polypeptide and the number indicates molecular mass in kDa), while the NADPH-induced band was due exclusively to PMP29. PMP32 and PMP29 were purified by preparative SDS/PAGE and electroelution. Reconstituted PMP29 showed cytochrome c reductase activity and O2(-). production, and used NADPH specifically as electron donor. PMP32, however, had ferricyanide reductase and cytochrome c reductase activities, and was also able to generate O2(-). with NADH as electron donor, whereas NADPH was not effective as an inducer. The reductase activities of, and O2(-). production by, PMP32 were inhibited by quinacrine. Polyclonal antibodies against cucumber monodehydroascorbate reductase (MDHAR) recognized PMP32, and this polypeptide is likely to correspond to the MDHAR reported previously in pea leaf peroxisomal membranes.
Full Text
The Full Text of this article is available as a PDF (128.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alani A. A., Luster D. G., Donaldson R. P. Development of Endoplasmic Reticulum and Glyoxysomal Membrane Redox Activities during Castor Bean Germination. Plant Physiol. 1990 Dec;94(4):1842–1848. doi: 10.1104/pp.94.4.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 1984;105:429–435. doi: 10.1016/s0076-6879(84)05060-6. [DOI] [PubMed] [Google Scholar]
- Bowditch M. L., Donaldson R. P. Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol. 1990 Oct;94(2):531–537. doi: 10.1104/pp.94.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Corpas F. J., Barroso J. B., Sandalio L. M., Distefano S., Palma J. M., Lupiáez J. A., Del Río L. A. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J. 1998 Mar 1;330(Pt 2):777–784. doi: 10.1042/bj3300777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corpas F. J., Bunkelmann J., Trelease R. N. Identification and immunochemical characterization of a family of peroxisome membrane proteins (PMPs) in oilseed glyoxysomes. Eur J Cell Biol. 1994 Dec;65(2):280–290. [PubMed] [Google Scholar]
- Corpas F. J., Trelease R. N. The plant 73 kDa peroxisomal membrane protein (PMP73) is immunorelated to molecular chaperones. Eur J Cell Biol. 1997 May;73(1):49–57. [PubMed] [Google Scholar]
- Crapo J. D., Oury T., Rabouille C., Slot J. W., Chang L. Y. Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10405–10409. doi: 10.1073/pnas.89.21.10405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross A. R., Jones O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J. 1986 Jul 1;237(1):111–116. doi: 10.1042/bj2370111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. A., Baird L. M., Langeberg L., Taugher C. Y., Anyan W. R., Vance C. P., Sarath G. Subcellular Localization of Oxygen Defense Enzymes in Soybean (Glycine max [L.] Merr.) Root Nodules. Plant Physiol. 1993 Jun;102(2):481–489. doi: 10.1104/pp.102.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Río L. A., Fernández V. M., Rupérez F. L., Sandalio L. M., Palma J. M. NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes. Plant Physiol. 1989 Mar;89(3):728–731. doi: 10.1104/pp.89.3.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhaunsi G. S., Singh I., Orak J. K., Singh A. K. Antioxidant enzymes in ciprofibrate-induced oxidative stress. Carcinogenesis. 1994 Sep;15(9):1923–1930. doi: 10.1093/carcin/15.9.1923. [DOI] [PubMed] [Google Scholar]
- Donaldson R. P., Luster D. G. Multiple forms of plant cytochromes p-450. Plant Physiol. 1991 Jul;96(3):669–674. doi: 10.1104/pp.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
- Goeptar A. R., Scheerens H., Vermeulen N. P. Oxygen and xenobiotic reductase activities of cytochrome P450. Crit Rev Toxicol. 1995;25(1):25–65. doi: 10.3109/10408449509089886. [DOI] [PubMed] [Google Scholar]
- González-Flecha B., Boveris A. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. Biochim Biophys Acta. 1995 Apr 13;1243(3):361–366. doi: 10.1016/0304-4165(94)00160-y. [DOI] [PubMed] [Google Scholar]
- Hicks D. B., Donaldson R. P. Electron transport in glyoxysomal membranes. Arch Biochem Biophys. 1982 Apr 15;215(1):280–288. doi: 10.1016/0003-9861(82)90306-x. [DOI] [PubMed] [Google Scholar]
- Jiang L. W., Bunkelmann J., Towill L., Kleff S., Trelease R. N. Identification of Peroxisome Membrane Proteins (PMPs) in Sunflower (Helianthus annuus L.) Cotyledons and Influence of Light on the PMP Developmental Pattern. Plant Physiol. 1994 Sep;106(1):293–302. doi: 10.1104/pp.106.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jimenez A., Hernandez J. A., Del Rio L. A., Sevilla F. Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves. Plant Physiol. 1997 May;114(1):275–284. doi: 10.1104/pp.114.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller G. A., Warner T. G., Steimer K. S., Hallewell R. A. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7381–7385. doi: 10.1073/pnas.88.16.7381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwahara T., White R. A., Jr, Agosin M. A cytosolic FAD-containing enzyme catalyzing cytochrome c reduction in Trypanosoma cruzi. I. Purification and some properties. Arch Biochem Biophys. 1985 May 15;239(1):18–28. doi: 10.1016/0003-9861(85)90807-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- Luster D. G., Bowditch M. I., Eldridge K. M., Donaldson R. P. Characterization of membrane-bound electron transport enzymes from castor bean glyoxysomes and endoplasmic reticulum. Arch Biochem Biophys. 1988 Aug 15;265(1):50–61. doi: 10.1016/0003-9861(88)90370-0. [DOI] [PubMed] [Google Scholar]
- Luster D. G., Donaldson R. P. Orientation of electron transport activities in the membrane of intact glyoxysomes isolated from castor bean endosperm. Plant Physiol. 1987 Nov;85(3):796–800. doi: 10.1104/pp.85.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- López-Huertas E., Sandalio L. M., Gómez M., Del Río L. A. Superoxide radical generation in peroxisomal membranes: evidence for the participation of the 18 kDa integral membrane polypeptide. Free Radic Res. 1997 Jun;26(6):497–506. doi: 10.3109/10715769709097820. [DOI] [PubMed] [Google Scholar]
- Murthy S. S., Zilinskas B. A. Molecular cloning and characterization of a cDNA encoding pea monodehydroascorbate reductase. J Biol Chem. 1994 Dec 9;269(49):31129–31133. [PubMed] [Google Scholar]
- Nielsen B. L., Brown L. R. The basis for colored silver-protein complex formation in stained polyacrylamide gels. Anal Biochem. 1984 Sep;141(2):311–315. doi: 10.1016/0003-2697(84)90047-2. [DOI] [PubMed] [Google Scholar]
- Patton S. E., Rosen G. M., Rauckman E. J. Superoxide production by purified hamster hepatic nuclei. Mol Pharmacol. 1980 Nov;18(3):588–593. [PubMed] [Google Scholar]
- Sano S., Miyake C., Mikami B., Asada K. Molecular characterization of monodehydroascorbate radical reductase from cucumber highly expressed in Escherichia coli. J Biol Chem. 1995 Sep 8;270(36):21354–21361. doi: 10.1074/jbc.270.36.21354. [DOI] [PubMed] [Google Scholar]
- Segura-Aguilar J., Kaiser R., Lind C. Separation and characterization of isoforms of DT-diaphorase from rat liver cytosol. Biochim Biophys Acta. 1992 Mar 27;1120(1):33–42. doi: 10.1016/0167-4838(92)90421-9. [DOI] [PubMed] [Google Scholar]
- Simontacchi M., Puntarulo S. Oxygen radical generation by isolated microsomes from soybean seedlings. Plant Physiol. 1992 Nov;100(3):1263–1268. doi: 10.1104/pp.100.3.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umeki S. Activation factors of neutrophil NADPH oxidase complex. Life Sci. 1994;55(1):1–13. doi: 10.1016/0024-3205(94)90076-0. [DOI] [PubMed] [Google Scholar]
- Wanders R. J., Denis S. Identification of superoxide dismutase in rat liver peroxisomes. Biochim Biophys Acta. 1992 Jan 23;1115(3):259–262. doi: 10.1016/0304-4165(92)90063-z. [DOI] [PubMed] [Google Scholar]
- Yamaguchi K., Mori H., Nishimura M. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol. 1995 Sep;36(6):1157–1162. doi: 10.1093/oxfordjournals.pcp.a078862. [DOI] [PubMed] [Google Scholar]
- Yubisui T., Murakami K., Takeshita M., Takano T. Purification by hydrophobic chromatography of soluble cytochrome b5 of human erythrocytes. Biochim Biophys Acta. 1988 Dec 7;936(3):447–451. doi: 10.1016/0005-2728(88)90022-9. [DOI] [PubMed] [Google Scholar]
- Zwacka R. M., Reuter A., Pfaff E., Moll J., Gorgas K., Karasawa M., Weiher H. The glomerulosclerosis gene Mpv17 encodes a peroxisomal protein producing reactive oxygen species. EMBO J. 1994 Nov 1;13(21):5129–5134. doi: 10.1002/j.1460-2075.1994.tb06842.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- del Río L. A., Palma J. M., Sandalio L. M., Corpas F. J., Pastori G. M., Bueno P., López-Huertas E. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans. 1996 May;24(2):434–438. doi: 10.1042/bst0240434. [DOI] [PubMed] [Google Scholar]
- del Río L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med. 1992 Nov;13(5):557–580. doi: 10.1016/0891-5849(92)90150-f. [DOI] [PubMed] [Google Scholar]
- van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]