Abstract
gamma-Glutamylcysteine synthetase (GCS) is reported to catalyse the rate-limiting step in glutathione biosynthesis, and is a heterodimer composed of a catalytic subunit [heavy subunit (GCSh) of Mr 73000] and a regulatory subunit [light subunit (GCSl) of Mr 31000]. In the present study, we have demonstrated for the first time a potential role for GCSl in resistance towards doxorubicin and cadmium chloride. Addition of recombinant GCSl to HeLa cell extracts in vitro was found to result in an increase in GCS activity of between 2- and 3-fold. Transient transfections of COS-1 cells with the GCSl cDNA cause an increase in GCS activity of approx. 2-fold, and a small but significant (P=0.008) increase in glutathione levels from 126.9+/-4. 2 nmol/mg protein to 178.8+/-19.1 nmol/mg protein. We proceeded to make a HeLa cell line (LN73), which stably overexpresses GCSl. These cells overexpress GCSl approx. 20-fold above basal levels. LN73 was found to have a 2-fold increase in GCS activity (437.3+/-85.2 pmol/min per mg) relative to the control cell line, HL9 (213.4+/-71. 8 pmol/min per mg). In contrast with the transient transfections in COS-1 cells, stable overexpression of GCSl was found not to be associated with an increase in glutathione content. However, when the LN73 and HL9 cells were treated with the glutathione-depleting agent, diethylmaleate, the LN73 cells were found to have an enhanced ability to regenerate glutathione, compared with HL9 cells. The cell lines were treated with various anti-cancer drugs, and their cytotoxicity was examined. No obvious differences in toxicity were observed between the different cell lines following treatment with cisplatin and melphalan. The redox-cycling agent doxorubicin, however, was found to be more toxic (approx. 2-fold) to the HL9 cells than the LN73 cells. When the cells were treated with the carcinogenic transition-metal compound, cadmium chloride, LN73 cells were found to be approx. 3-fold more resistant than HL9 cells.
Full Text
The Full Text of this article is available as a PDF (150.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams K. J., Carmichael J., Wolf C. R. Altered mouse bone marrow glutathione and glutathione transferase levels in response to cytotoxins. Cancer Res. 1985 Apr;45(4):1669–1673. [PubMed] [Google Scholar]
- Bailey H. H., Gipp J. J., Ripple M., Wilding G., Mulcahy R. T. Increase in gamma-glutamylcysteine synthetase activity and steady-state messenger RNA levels in melphalan-resistant DU-145 human prostate carcinoma cells expressing elevated glutathione levels. Cancer Res. 1992 Sep 15;52(18):5115–5118. [PubMed] [Google Scholar]
- Biaglow J. E., Mitchell J. B., Held K. The importance of peroxide and superoxide in the X-ray response. Int J Radiat Oncol Biol Phys. 1992;22(4):665–669. doi: 10.1016/0360-3016(92)90499-8. [DOI] [PubMed] [Google Scholar]
- Black S. M., Wolf C. R. The role of glutathione-dependent enzymes in drug resistance. Pharmacol Ther. 1991;51(1):139–154. doi: 10.1016/0163-7258(91)90044-m. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Cai J., Huang Z. Z., Lu S. C. Differential regulation of gamma-glutamylcysteine synthetase heavy and light subunit gene expression. Biochem J. 1997 Aug 15;326(Pt 1):167–172. doi: 10.1042/bj3260167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chao C. C., Huang Y. T., Ma C. M., Chou W. Y., Lin-Chao S. Overexpression of glutathione S-transferase and elevation of thiol pools in a multidrug-resistant human colon cancer cell line. Mol Pharmacol. 1992 Jan;41(1):69–75. [PubMed] [Google Scholar]
- Colvin O. M., Friedman H. S., Gamcsik M. P., Fenselau C., Hilton J. Role of glutathione in cellular resistance to alkylating agents. Adv Enzyme Regul. 1993;33:19–26. doi: 10.1016/0065-2571(93)90006-y. [DOI] [PubMed] [Google Scholar]
- Galloway D. C., Blake D. G., Shepherd A. G., McLellan L. I. Regulation of human gamma-glutamylcysteine synthetase: co-ordinate induction of the catalytic and regulatory subunits in HepG2 cells. Biochem J. 1997 Nov 15;328(Pt 1):99–104. doi: 10.1042/bj3280099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gipp J. J., Bailey H. H., Mulcahy R. T. Cloning and sequencing of the cDNA for the light subunit of human liver gamma-glutamylcysteine synthetase and relative mRNA levels for heavy and light subunits in human normal tissues. Biochem Biophys Res Commun. 1995 Jan 17;206(2):584–589. doi: 10.1006/bbrc.1995.1083. [DOI] [PubMed] [Google Scholar]
- Godwin A. K., Meister A., O'Dwyer P. J., Huang C. S., Hamilton T. C., Anderson M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3070–3074. doi: 10.1073/pnas.89.7.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenbaum M., Létourneau S., Assar H., Schecter R. L., Batist G., Cournoyer D. Retrovirus-mediated gene transfer of rat glutathione S-transferase Yc confers alkylating drug resistance in NIH 3T3 mouse fibroblasts. Cancer Res. 1994 Aug 15;54(16):4442–4447. [PubMed] [Google Scholar]
- Hao X. Y., Widersten M., Ridderström M., Hellman U., Mannervik B. Co-variation of glutathione transferase expression and cytostatic drug resistance in HeLa cells: establishment of class Mu glutathione transferase M3-3 as the dominating isoenzyme. Biochem J. 1994 Jan 1;297(Pt 1):59–67. doi: 10.1042/bj2970059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
- Huang C. S., Anderson M. E., Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 25;268(27):20578–20583. [PubMed] [Google Scholar]
- Huang C. S., Chang L. S., Anderson M. E., Meister A. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 15;268(26):19675–19680. [PubMed] [Google Scholar]
- Kotoh S., Naito S., Yokomizo A., Kohno K., Kuwano M., Kumazawa J. Enhanced expression of gamma-glutamylcysteine synthetase and glutathione S-transferase genes in cisplatin-resistant bladder cancer cells with multidrug resistance phenotype. J Urol. 1997 Mar;157(3):1054–1058. [PubMed] [Google Scholar]
- Kramer R. A., Zakher J., Kim G. Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science. 1988 Aug 5;241(4866):694–697. doi: 10.1126/science.3399900. [DOI] [PubMed] [Google Scholar]
- Kurokawa H., Ishida T., Nishio K., Arioka H., Sata M., Fukumoto H., Miura M., Saijo N. Gamma-glutamylcysteine synthetase gene overexpression results in increased activity of the ATP-dependent glutathione S-conjugate export pump and cisplatin resistance. Biochem Biophys Res Commun. 1995 Nov 2;216(1):258–264. doi: 10.1006/bbrc.1995.2618. [DOI] [PubMed] [Google Scholar]
- Lai G. M., Moscow J. A., Alvarez M. G., Fojo A. T., Bates S. E. Contribution of glutathione and glutathione-dependent enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines. Int J Cancer. 1991 Nov 11;49(5):688–695. doi: 10.1002/ijc.2910490511. [DOI] [PubMed] [Google Scholar]
- Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
- Lewis A. D., Hickson I. D., Robson C. N., Harris A. L., Hayes J. D., Griffiths S. A., Manson M. M., Hall A. E., Moss J. E., Wolf C. R. Amplification and increased expression of alpha class glutathione S-transferase-encoding genes associated with resistance to nitrogen mustards. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8511–8515. doi: 10.1073/pnas.85.22.8511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
- Moore W. R., Anderson M. E., Meister A., Murata K., Kimura A. Increased capacity for glutathione synthesis enhances resistance to radiation in Escherichia coli: a possible model for mammalian cell protection. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1461–1464. doi: 10.1073/pnas.86.5.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moscow J. A., Dixon K. H. Glutathione-related enzymes, glutathione and multidrug resistance. Cytotechnology. 1993;12(1-3):155–170. doi: 10.1007/BF00744663. [DOI] [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- Mulcahy R. T., Bailey H. H., Gipp J. J. Transfection of complementary DNAs for the heavy and light subunits of human gamma-glutamylcysteine synthetase results in an elevation of intracellular glutathione and resistance to melphalan. Cancer Res. 1995 Nov 1;55(21):4771–4775. [PubMed] [Google Scholar]
- Mulcahy R. T., Bailey H. H., Gipp J. J. Up-regulation of gamma-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels. Cancer Chemother Pharmacol. 1994;34(1):67–71. doi: 10.1007/BF00686114. [DOI] [PubMed] [Google Scholar]
- Nakagawa K., Saijo N., Tsuchida S., Sakai M., Tsunokawa Y., Yokota J., Muramatsu M., Sato K., Terada M., Tew K. D. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J Biol Chem. 1990 Mar 15;265(8):4296–4301. [PubMed] [Google Scholar]
- Ogretmen B., Bahadori H. R., McCauley M. D., Boylan A., Green M. R., Safa A. R. Co-ordinated over-expression of the MRP and gamma-glutamylcysteine synthetase genes, but not MDR1, correlates with doxorubicin resistance in human malignant mesothelioma cell lines. Int J Cancer. 1998 Mar 2;75(5):757–761. doi: 10.1002/(sici)1097-0215(19980302)75:5<757::aid-ijc15>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Osmak M. Multifactorial molecular mechanisms are involved in resistance of preirradiated human cervix carcinoma cells to cis-dichlorodiammineplatinum (II) and vincristine. Neoplasma. 1993;40(2):97–101. [PubMed] [Google Scholar]
- Puchalski R. B., Fahl W. E. Expression of recombinant glutathione S-transferase pi, Ya, or Yb1 confers resistance to alkylating agents. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2443–2447. doi: 10.1073/pnas.87.7.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raghu G., Pierre-Jerome M., Dordal M. S., Simonian P., Bauer K. D., Winter J. N. P-glycoprotein and alterations in the glutathione/glutathione-peroxidase cycle underlie doxorubicin resistance in HL-60-R, a subclone of the HL-60 human leukemia cell line. Int J Cancer. 1993 Mar 12;53(5):804–811. doi: 10.1002/ijc.2910530517. [DOI] [PubMed] [Google Scholar]
- Richman P. G., Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975 Feb 25;250(4):1422–1426. [PubMed] [Google Scholar]
- Schecter R. L., Alaoui-Jamali M. A., Woo A., Fahl W. E., Batist G. Expression of a rat glutathione-S-transferase complementary DNA in rat mammary carcinoma cells: impact upon alkylator-induced toxicity. Cancer Res. 1993 Oct 15;53(20):4900–4906. [PubMed] [Google Scholar]
- Sekura R., Meister A. gamma-Glutamylcysteine synthetase. Further purification, "half of the sites" reactivity, subunits, and specificity. J Biol Chem. 1977 Apr 25;252(8):2599–2605. [PubMed] [Google Scholar]
- Shimizu M., Hochadel J. F., Waalkes M. P. Effects of glutathione depletion on cadmium-induced metallothionein synthesis, cytotoxicity, and proto-oncogene expression in cultured rat myoblasts. J Toxicol Environ Health. 1997 Aug 29;51(6):609–621. doi: 10.1080/00984109708984047. [DOI] [PubMed] [Google Scholar]
- Sierra-Rivera E., Dasouki M., Summar M. L., Krishnamani M. R., Meredith M., Rao P. N., Phillips J. A., 3rd, Freeman M. L. Assignment of the human gene (GLCLR) that encodes the regulatory subunit of gamma-glutamylcysteine synthetase to chromosome 1p21. Cytogenet Cell Genet. 1996;72(2-3):252–254. doi: 10.1159/000134202. [DOI] [PubMed] [Google Scholar]
- Sierra-Rivera E., Summar M. L., Dasouki M., Krishnamani M. R., Phillips J. A., Freeman M. L. Assignment of the gene (GLCLC) that encodes the heavy subunit of gamma-glutamylcysteine synthetase to human chromosome 6. Cytogenet Cell Genet. 1995;70(3-4):278–279. doi: 10.1159/000134051. [DOI] [PubMed] [Google Scholar]
- Singhal R. K., Anderson M. E., Meister A. Glutathione, a first line of defense against cadmium toxicity. FASEB J. 1987 Sep;1(3):220–223. doi: 10.1096/fasebj.1.3.2887478. [DOI] [PubMed] [Google Scholar]
- Spitz D. R., Phillips J. W., Adams D. T., Sherman C. M., Deen D. F., Li G. C. Cellular resistance to oxidative stress is accompanied by resistance to cisplatin: the significance of increased catalase activity and total glutathione in hydrogen peroxide-resistant fibroblasts. J Cell Physiol. 1993 Jul;156(1):72–79. doi: 10.1002/jcp.1041560111. [DOI] [PubMed] [Google Scholar]
- Stacey N. H., Cantilena L. R., Jr, Klaassen C. D. Cadmium toxicity and lipid peroxidation in isolated rat hepatocytes. Toxicol Appl Pharmacol. 1980 May;53(3):470–480. doi: 10.1016/0041-008x(80)90359-2. [DOI] [PubMed] [Google Scholar]
- Tew K. D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994 Aug 15;54(16):4313–4320. [PubMed] [Google Scholar]
- Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
- Tsuchiya K., Mulcahy R. T., Reid L. L., Disteche C. M., Kavanagh T. J. Mapping of the glutamate-cysteine ligase catalytic subunit gene (GLCLC) to human chromosome 6p12 and mouse chromosome 9D-E and of the regulatory subunit gene (GLCLR) to human chromosome 1p21-p22 and mouse chromosome 3H1-3. Genomics. 1995 Dec 10;30(3):630–632. doi: 10.1006/geno.1995.1293. [DOI] [PubMed] [Google Scholar]
- Vallis K. A., Reglinski J., Garner M., Bridgeman M. M., Wolf C. R. Menadione-resistant Chinese hamster ovary cells have an increased capacity for glutathione synthesis. Br J Cancer. 1997;76(7):870–877. doi: 10.1038/bjc.1997.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wigler M., Pellicer A., Silverstein S., Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978 Jul;14(3):725–731. doi: 10.1016/0092-8674(78)90254-4. [DOI] [PubMed] [Google Scholar]
- Yan N., Meister A. Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1990 Jan 25;265(3):1588–1593. [PubMed] [Google Scholar]
- Yao K. S., Godwin A. K., Johnson S. W., Ozols R. F., O'Dwyer P. J., Hamilton T. C. Evidence for altered regulation of gamma-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res. 1995 Oct 1;55(19):4367–4374. [PubMed] [Google Scholar]
- Zhang K., Mack P., Wong K. P. Glutathione-related mechanisms in cellular resistance to anticancer drugs. Int J Oncol. 1998 Apr;12(4):871–882. doi: 10.3892/ijo.12.4.871. [DOI] [PubMed] [Google Scholar]