Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 15;338(Pt 1):23–27.

Activity of human 11-cis-retinol dehydrogenase (Rdh5) with steroids and retinoids and expression of its mRNA in extra-ocular human tissue.

J Wang 1, X Chai 1, U Eriksson 1, J L Napoli 1
PMCID: PMC1220019  PMID: 9931293

Abstract

This report describes the activity of recombinant human Rdh5 (11-cis-retinol dehydrogenase) with steroids and retinoids and expression of the Rdh5 mRNA in extra-ocular human tissue. The data show that Rdh5 catalyses 9-cis-retinol metabolism equally efficiently as 11-cis-retinol metabolism and recognizes 5alpha-androstan-3alpha,17beta-diol and androsterone as substrates (3alpha-hydroxysteroid dehydrogenase activity), but not testosterone, dihydrotestosterone, oestradiol and corticosterone (lack of 17beta-hydroxysteroid and 11beta-hydroxysteroid dehydrogenase activities). Rdh5 mRNA expression was widespread in extra-ocular tissues with human liver (100% relative expression in extra-ocular tissues only) and mammary gland (97% relative to liver) showing the most intense signals. Other noteworthy relatively intense expression sites included colon (45%), thymus (43%), small intestine (39%), kidney (37%), bladder (29%), pancreas and spleen (28% each), heart (26%), uterus and ovary (25% each), testis (22%) and spinal cord (24%). Human fetal tissues also expressed Rdh5 with fetal liver showing the most intense expression among the fetal tissues (20%). Considered along with the identical nucleotide sequences in the untranslated regions of human Rdh5 and human 9-cis-retinol dehydrogenase cDNAs and the nearly identical nucleotide sequences overall (99% identity), the current results suggest that the two cDNAs represent a single gene product.

Full Text

The Full Text of this article is available as a PDF (128.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein P. S., Law W. C., Rando R. R. Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1849–1853. doi: 10.1073/pnas.84.7.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chai X., Boerman M. H., Zhai Y., Napoli J. L. Cloning of a cDNA for liver microsomal retinol dehydrogenase. A tissue-specific, short-chain alcohol dehydrogenase. J Biol Chem. 1995 Feb 24;270(8):3900–3904. doi: 10.1074/jbc.270.8.3900. [DOI] [PubMed] [Google Scholar]
  4. Chai X., Zhai Y., Napoli J. L. Cloning of a rat cDNA encoding retinol dehydrogenase isozyme type III. Gene. 1996 Mar 9;169(2):219–222. doi: 10.1016/0378-1119(95)00833-0. [DOI] [PubMed] [Google Scholar]
  5. Chai X., Zhai Y., Napoli J. L. cDNA cloning and characterization of a cis-retinol/3alpha-hydroxysterol short-chain dehydrogenase. J Biol Chem. 1997 Dec 26;272(52):33125–33131. doi: 10.1074/jbc.272.52.33125. [DOI] [PubMed] [Google Scholar]
  6. Chai X., Zhai Y., Popescu G., Napoli J. L. Cloning of a cDNA for a second retinol dehydrogenase type II. Expression of its mRNA relative to type I. J Biol Chem. 1995 Nov 24;270(47):28408–28412. doi: 10.1074/jbc.270.47.28408. [DOI] [PubMed] [Google Scholar]
  7. Driessen C. A., Janssen B. P., Winkens H. J., van Vugt A. H., de Leeuw T. L., Janssen J. J. Cloning and expression of a cDNA encoding bovine retinal pigment epithelial 11-cis retinol dehydrogenase. Invest Ophthalmol Vis Sci. 1995 Sep;36(10):1988–1996. [PubMed] [Google Scholar]
  8. Jörnvall H., Persson B., Krook M., Atrian S., Gonzàlez-Duarte R., Jeffery J., Ghosh D. Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995 May 9;34(18):6003–6013. doi: 10.1021/bi00018a001. [DOI] [PubMed] [Google Scholar]
  9. Lohnes D., Mark M., Mendelsohn C., Dollé P., Decimo D., LeMeur M., Dierich A., Gorry P., Chambon P. Developmental roles of the retinoic acid receptors. J Steroid Biochem Mol Biol. 1995 Jun;53(1-6):475–486. doi: 10.1016/0960-0760(95)00094-g. [DOI] [PubMed] [Google Scholar]
  10. Maden M. The effect of vitamin A (retinoids) on pattern formation implies a uniformity of developmental mechanisms throughout the animal kingdom. Acta Biotheor. 1993 Dec;41(4):425–445. doi: 10.1007/BF00709375. [DOI] [PubMed] [Google Scholar]
  11. Mertz J. R., Shang E., Piantedosi R., Wei S., Wolgemuth D. J., Blaner W. S. Identification and characterization of a stereospecific human enzyme that catalyzes 9-cis-retinol oxidation. A possible role in 9-cis-retinoic acid formation. J Biol Chem. 1997 May 2;272(18):11744–11749. doi: 10.1074/jbc.272.18.11744. [DOI] [PubMed] [Google Scholar]
  12. Napoli J. L. Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin Immunol Immunopathol. 1996 Sep;80(3 Pt 2):S52–S62. doi: 10.1006/clin.1996.0142. [DOI] [PubMed] [Google Scholar]
  13. Napoli J. L. Retinoic acid biosynthesis and metabolism. FASEB J. 1996 Jul;10(9):993–1001. doi: 10.1096/fasebj.10.9.8801182. [DOI] [PubMed] [Google Scholar]
  14. Napoli J. L. Retinoid binding-proteins redirect retinoid metabolism: biosynthesis and metabolism of retinoic acid. Semin Cell Dev Biol. 1997 Aug;8(4):403–415. doi: 10.1006/scdb.1997.0164. [DOI] [PubMed] [Google Scholar]
  15. Romert A., Tuvendal P., Simon A., Dencker L., Eriksson U. The identification of a 9-cis retinol dehydrogenase in the mouse embryo reveals a pathway for synthesis of 9-cis retinoic acid. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4404–4409. doi: 10.1073/pnas.95.8.4404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ross A. C., Gardner E. M. The function of vitamin A in cellular growth and differentiation, and its roles during pregnancy and lactation. Adv Exp Med Biol. 1994;352:187–200. doi: 10.1007/978-1-4899-2575-6_15. [DOI] [PubMed] [Google Scholar]
  17. Simon A., Hellman U., Wernstedt C., Eriksson U. The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J Biol Chem. 1995 Jan 20;270(3):1107–1112. [PubMed] [Google Scholar]
  18. Simon A., Lagercrantz J., Bajalica-Lagercrantz S., Eriksson U. Primary structure of human 11-cis retinol dehydrogenase and organization and chromosomal localization of the corresponding gene. Genomics. 1996 Sep 15;36(3):424–430. doi: 10.1006/geno.1996.0487. [DOI] [PubMed] [Google Scholar]
  19. Su J., Chai X., Kahn B., Napoli J. L. cDNA cloning, tissue distribution, and substrate characteristics of a cis-Retinol/3alpha-hydroxysterol short-chain dehydrogenase isozyme. J Biol Chem. 1998 Jul 10;273(28):17910–17916. doi: 10.1074/jbc.273.28.17910. [DOI] [PubMed] [Google Scholar]
  20. Sucov H. M., Evans R. M. Retinoic acid and retinoic acid receptors in development. Mol Neurobiol. 1995 Apr-Jun;10(2-3):169–184. doi: 10.1007/BF02740674. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES