Abstract
We have previously shown that stromal and thylakoid-bound ascorbate peroxidase (APX) isoenzymes of spinach chloroplasts arise from a common pre-mRNA by alternative splicing in the C-terminus of the isoenzymes [Ishikawa, Yoshimura, Tamoi, Takeda and Shigeoka (1997) Biochem. J. 328, 795-800]. To explore the production of mature, functional mRNA encoding chloroplast APX isoenzymes, reverse transcriptase-mediated PCR and S1 nuclease protection analysis were performed with poly(A)+ RNA or polysomal RNA from spinach leaves. As a result, four mRNA variants, one form of thylakoid-bound APX (tAPX-I) and three forms of stromal APX (sAPX-I, sAPX-II and sAPX-III), were identified. The sAPX-I and sAPX-III mRNA species were generated through the excision of intron 11; they encoded the previously identified sAPX protein. Interestingly, the sAPX-II mRNA was generated by the insertion of intron 11 between exons 11 and 12. The use of this insertional sequence was in frame with the coding sequence and would lead to the production of a novel isoenzyme containing a C-terminus in which a seven-residue sequence replaced the last residue of the previously identified sAPX. The recombinant novel enzyme expressed in Escherichia coli showed the same enzymic properties (except for molecular mass) as the recombinant sAPX from the previously identified sAPX-I mRNA, suggesting that the protein translated from the sAPX-II mRNA is functional as a soluble APX in vivo. The S1 nuclease protection analysis showed that the expression levels of mRNA variants for sAPX and tAPX isoenzymes are in nearly equal quantities throughout the spinach leaves grown under normal conditions. The present results demonstrate that the expression of chloroplast APX isoenzymes is regulated by a differential splicing efficiency that is dependent on the 3'-terminal processing of ApxII, the gene encoding the chloroplast APX isoenzymes.
Full Text
The Full Text of this article is available as a PDF (256.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Goodall G. J., Filipowicz W. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell. 1989 Aug 11;58(3):473–483. doi: 10.1016/0092-8674(89)90428-5. [DOI] [PubMed] [Google Scholar]
- Hopf N., Plesofsky-Vig N., Brambl R. The heat shock response of pollen and other tissues of maize. Plant Mol Biol. 1992 Jul;19(4):623–630. doi: 10.1007/BF00026788. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Sakai K., Takeda T., Shigeoka S. Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Lett. 1995 Jun 19;367(1):28–32. doi: 10.1016/0014-5793(95)00539-l. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Sakai K., Yoshimura K., Takeda T., Shigeoka S. cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3'-coding regions. FEBS Lett. 1996 Apr 22;384(3):289–293. doi: 10.1016/0014-5793(96)00332-8. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Takeda T., Kohno H., Shigeoka S. Molecular characterization of Euglena ascorbate peroxidase using monoclonal antibody. Biochim Biophys Acta. 1996 May 21;1290(1):69–75. doi: 10.1016/0304-4165(96)00002-5. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Yoshimura K., Sakai K., Tamoi M., Takeda T., Shigeoka S. Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol. 1998 Jan;39(1):23–34. doi: 10.1093/oxfordjournals.pcp.a029285. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Yoshimura K., Tamoi M., Takeda T., Shigeoka S. Alternative mRNA splicing of 3'-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochem J. 1997 Dec 15;328(Pt 3):795–800. doi: 10.1042/bj3280795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luehrsen K. R., Walbot V. Addition of A- and U-rich sequence increases the splicing efficiency of a deleted form of a maize intron. Plant Mol Biol. 1994 Feb;24(3):449–463. doi: 10.1007/BF00024113. [DOI] [PubMed] [Google Scholar]
- Mano S., Yamaguchi K., Hayashi M., Nishimura M. Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett. 1997 Aug 11;413(1):21–26. doi: 10.1016/s0014-5793(97)00862-4. [DOI] [PubMed] [Google Scholar]
- Rothnie H. M., Reid J., Hohn T. The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3'-end formation in plants. EMBO J. 1994 May 1;13(9):2200–2210. doi: 10.1002/j.1460-2075.1994.tb06497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanfaçon H. Analysis of figwort mosaic virus (plant pararetrovirus) polyadenylation signal. Virology. 1994 Jan;198(1):39–49. doi: 10.1006/viro.1994.1006. [DOI] [PubMed] [Google Scholar]
- Shigeoka S., Nakano Y., Kitaoka S. Purification and some properties of L-ascorbic-acid-specific peroxidase in Euglena gracilis Z. Arch Biochem Biophys. 1980 Apr 15;201(1):121–127. doi: 10.1016/0003-9861(80)90495-6. [DOI] [PubMed] [Google Scholar]
- Shikanai T., Takeda T., Yamauchi H., Sano S., Tomizawa K. I., Yokota A., Shigeoka S. Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett. 1998 May 22;428(1-2):47–51. doi: 10.1016/s0014-5793(98)00483-9. [DOI] [PubMed] [Google Scholar]
- Shirzadegan M., Christie P., Seemann J. R. An efficient method for isolation of RNA from tissue cultured plant cells. Nucleic Acids Res. 1991 Nov 11;19(21):6055–6055. doi: 10.1093/nar/19.21.6055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takimoto I., Christensen A. H., Quail P. H., Uchimiya H., Toki S. Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol Biol. 1994 Nov;26(3):1007–1012. doi: 10.1007/BF00028868. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahle E. 3'-end cleavage and polyadenylation of mRNA precursors. Biochim Biophys Acta. 1995 Apr 4;1261(2):183–194. doi: 10.1016/0167-4781(94)00248-2. [DOI] [PubMed] [Google Scholar]
- Wu L., Ueda T., Messing J. 3'-end processing of the maize 27 kDa zein mRNA. Plant J. 1993 Sep;4(3):535–544. doi: 10.1046/j.1365-313x.1993.04030535.x. [DOI] [PubMed] [Google Scholar]
- Yoshimura K., Ishikawa T., Nakamura Y., Tamoi M., Takeda T., Tada T., Nishimura K., Shigeoka S. Comparative study on recombinant chloroplastic and cytosolic ascorbate peroxidase isozymes of spinach. Arch Biochem Biophys. 1998 May 1;353(1):55–63. doi: 10.1006/abbi.1997.0612. [DOI] [PubMed] [Google Scholar]