Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 15;338(Pt 1):115–121.

Presence of enolase in the M-band of skeletal muscle and possible indirect interaction with the cytosolic muscle isoform of creatine kinase.

G Foucault 1, M Vacher 1, T Merkulova 1, A Keller 1, M Arrio-Dupont 1
PMCID: PMC1220032  PMID: 9931306

Abstract

Glycerol-skinned skeletal muscle fibres retain the defined sarcomeric structure of the myofibrils. We show here that a small fraction of two enzymes important for energy metabolism, the cytosolic muscle isoform of creatine kinase (EC 2.7.3.2), MM-creatine kinase (MM-CK), and enolase (EC 4.2.1.11), remains bound to skinned fibres. CK is slowly exchangeable, whereas enolase is firmly bound. Two-dimensional gel electrophoresis followed by Western blot analyses demonstrates that both alpha (ubiquitous) and beta (muscle-specific) subunits of enolase are present in these preparations. Enolase and CK were co-localized at the M-band of the sarcomeres, as observed by indirect immunofluorescence and confocal microscopy. Cross-linking experiments were performed on skinned fibres with three bifunctional succinimidyl esters of different lengths and yielded a protein complex of 150 kDa that reacted with antibodies directed against either M-CK or beta-enolase. The cross-linking efficiency was greatest for the longest reagent and zero for the shortest one. The length of the cross-linker giving a covalent complex between the two enzymes does not support the notion of a direct interaction between M-CK and enolase. This is the first demonstration of the presence of an enzyme of energy metabolism other than CK at the M-band of myofibres.

Full Text

The Full Text of this article is available as a PDF (190.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrio-Dupont M. An example of substrate channeling between co-immobilized enzymes. Coupled activity of myosin ATPase and creatine kinase bound to frog heart myofilaments. FEBS Lett. 1988 Nov 21;240(1-2):181–185. doi: 10.1016/0014-5793(88)80364-8. [DOI] [PubMed] [Google Scholar]
  2. Arrio-Dupont M., Foucault G., Vacher M., Douhou A., Cribier S. Mobility of creatine phosphokinase and beta-enolase in cultured muscle cells. Biophys J. 1997 Nov;73(5):2667–2673. doi: 10.1016/S0006-3495(97)78295-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brooks S. P., Storey K. B. Where is the glycolytic complex? A critical evaluation of present data from muscle tissue. FEBS Lett. 1991 Jan 28;278(2):135–138. doi: 10.1016/0014-5793(91)80101-8. [DOI] [PubMed] [Google Scholar]
  4. Bäumert H. G., Fasold H. Cross-linking techniques. Methods Enzymol. 1989;172:584–609. doi: 10.1016/s0076-6879(89)72035-8. [DOI] [PubMed] [Google Scholar]
  5. Clarke F. M., Masters C. J. On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim Biophys Acta. 1975 Jan 13;381(1):37–46. doi: 10.1016/0304-4165(75)90187-7. [DOI] [PubMed] [Google Scholar]
  6. Duquerroy S., Camus C., Janin J. X-ray structure and catalytic mechanism of lobster enolase. Biochemistry. 1995 Oct 3;34(39):12513–12523. [PubMed] [Google Scholar]
  7. Dölken G., Leisner E., Pette D. Immunofluorescent localization of glycogenolytic and glycolytic enzyme proteins and of malate dehydrogenase isozymes in cross-striated skeletal muscle and heart of the rabbit. Histochemistry. 1975;43(2):113–121. doi: 10.1007/BF00492440. [DOI] [PubMed] [Google Scholar]
  8. Fritz-Wolf K., Schnyder T., Wallimann T., Kabsch W. Structure of mitochondrial creatine kinase. Nature. 1996 May 23;381(6580):341–345. doi: 10.1038/381341a0. [DOI] [PubMed] [Google Scholar]
  9. Grove B. K., Kurer V., Lehner C., Doetschman T. C., Perriard J. C., Eppenberger H. M. A new 185,000-dalton skeletal muscle protein detected by monoclonal antibodies. J Cell Biol. 1984 Feb;98(2):518–524. doi: 10.1083/jcb.98.2.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herasymowych O. S., Mani R. S., Kay C. M., Bradley R. D., Scraba D. G. Ultrastructure studies on the binding of creatine kinase and the 165,000 molecular weight component to the M-band of muscle. J Mol Biol. 1980 Jan 15;136(2):193–198. doi: 10.1016/0022-2836(80)90313-7. [DOI] [PubMed] [Google Scholar]
  11. KUBY S. A., NODA L., LARDY H. A. Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. J Biol Chem. 1954 Jul;209(1):191–201. [PubMed] [Google Scholar]
  12. Kato K., Shimizu A., Semba R., Satoh T. Tissue distribution, developmental profiles and effect of denervation of enolase isozymes in rat muscles. Biochim Biophys Acta. 1985 Jul 26;841(1):50–58. [PubMed] [Google Scholar]
  13. Keller A., Ott M. O., Lamandé N., Lucas M., Gros F., Buckingham M., Lazar M. Activation of the gene encoding the glycolytic enzyme beta-enolase during early myogenesis precedes an increased expression during fetal muscle development. Mech Dev. 1992 Jul;38(1):41–54. doi: 10.1016/0925-4773(92)90037-k. [DOI] [PubMed] [Google Scholar]
  14. Keller A., Rouzeau J. D., Farhadian F., Wisnewsky C., Marotte F., Lamandé N., Samuel J. L., Schwartz K., Lazar M., Lucas M. Differential expression of alpha- and beta-enolase genes during rat heart development and hypertrophy. Am J Physiol. 1995 Dec;269(6 Pt 2):H1843–H1851. doi: 10.1152/ajpheart.1995.269.6.H1843. [DOI] [PubMed] [Google Scholar]
  15. Keller A., Scarna H., Mermet A., Pujol J. F. Biochemical and immunological properties of the mouse brain enolases purified by a simple method. J Neurochem. 1981 Apr;36(4):1389–1397. doi: 10.1111/j.1471-4159.1981.tb00577.x. [DOI] [PubMed] [Google Scholar]
  16. Kenyon G. L., Reed G. H. Creatine kinase: structure-activity relationships. Adv Enzymol Relat Areas Mol Biol. 1983;54:367–426. doi: 10.1002/9780470122990.ch6. [DOI] [PubMed] [Google Scholar]
  17. Knull H. R., Walsh J. L. Association of glycolytic enzymes with the cytoskeleton. Curr Top Cell Regul. 1992;33:15–30. doi: 10.1016/b978-0-12-152833-1.50007-1. [DOI] [PubMed] [Google Scholar]
  18. Labeit S., Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995 Oct 13;270(5234):293–296. doi: 10.1126/science.270.5234.293. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Maughan D., Wegner E. On the organization and diffusion of glycolytic enzymes in skeletal muscle. Prog Clin Biol Res. 1989;315:137–147. [PubMed] [Google Scholar]
  21. Merkulova T., Lucas M., Jabet C., Lamandé N., Rouzeau J. D., Gros F., Lazar M., Keller A. Biochemical characterization of the mouse muscle-specific enolase: developmental changes in electrophoretic variants and selective binding to other proteins. Biochem J. 1997 May 1;323(Pt 3):791–800. doi: 10.1042/bj3230791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Méjean C., Pons F., Benyamin Y., Roustan C. Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments. Biochem J. 1989 Dec 15;264(3):671–677. doi: 10.1042/bj2640671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Obermann W. M., Gautel M., Steiner F., van der Ven P. F., Weber K., Fürst D. O. The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy. J Cell Biol. 1996 Sep;134(6):1441–1453. doi: 10.1083/jcb.134.6.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Obermann W. M., Gautel M., Weber K., Fürst D. O. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J. 1997 Jan 15;16(2):211–220. doi: 10.1093/emboj/16.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Obermann W. M., van der Ven P. F., Steiner F., Weber K., Fürst D. O. Mapping of a myosin-binding domain and a regulatory phosphorylation site in M-protein, a structural protein of the sarcomeric M band. Mol Biol Cell. 1998 Apr;9(4):829–840. doi: 10.1091/mbc.9.4.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rider C. C., Taylor C. B. Enolase isoenzymes in rat tissues. Electrophoretic, chromatographic, immunological and kinetic properties. Biochim Biophys Acta. 1974 Sep 13;365(1):285–300. doi: 10.1016/0005-2795(74)90273-6. [DOI] [PubMed] [Google Scholar]
  27. Sjöström M., Squire J. M. Fine structure of the A-band in cryo-sections. The structure of the A-band of human skeletal muscle fibres from ultra-thin cryo-sections negatively stained. J Mol Biol. 1977 Jan 5;109(1):49–68. doi: 10.1016/s0022-2836(77)80045-4. [DOI] [PubMed] [Google Scholar]
  28. Srere P. A., Ovadi J. Enzyme-enzyme interactions and their metabolic role. FEBS Lett. 1990 Aug 1;268(2):360–364. doi: 10.1016/0014-5793(90)81286-w. [DOI] [PubMed] [Google Scholar]
  29. Stolz M., Wallimann T. Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK. J Cell Sci. 1998 May;111(Pt 9):1207–1216. doi: 10.1242/jcs.111.9.1207. [DOI] [PubMed] [Google Scholar]
  30. Trinick J. Titin and nebulin: protein rulers in muscle? Trends Biochem Sci. 1994 Oct;19(10):405–409. doi: 10.1016/0968-0004(94)90088-4. [DOI] [PubMed] [Google Scholar]
  31. Ventura-Clapier R., Saks V. A., Vassort G., Lauer C., Elizarova G. V. Reversible MM-creatine kinase binding to cardiac myofibrils. Am J Physiol. 1987 Sep;253(3 Pt 1):C444–C455. doi: 10.1152/ajpcell.1987.253.3.C444. [DOI] [PubMed] [Google Scholar]
  32. Wallimann T. Bioenergetics. Dissecting the role of creatine kinase. Curr Biol. 1994 Jan 1;4(1):42–46. doi: 10.1016/s0960-9822(00)00008-7. [DOI] [PubMed] [Google Scholar]
  33. Wallimann T., Eppenberger H. M. Localization and function of M-line-bound creatine kinase. M-band model and creatine phosphate shuttle. Cell Muscle Motil. 1985;6:239–285. doi: 10.1007/978-1-4757-4723-2_8. [DOI] [PubMed] [Google Scholar]
  34. Wallimann T., Turner D. C., Eppenberger H. M. Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. J Cell Biol. 1977 Nov;75(2 Pt 1):297–317. doi: 10.1083/jcb.75.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Welch G. R. On the role of organized multienzyme systems in cellular metabolism: a general synthesis. Prog Biophys Mol Biol. 1977;32(2):103–191. [PubMed] [Google Scholar]
  37. van der Ven P. F., Fürst D. O. Assembly of titin, myomesin and M-protein into the sarcomeric M band in differentiating human skeletal muscle cells in vitro. Cell Struct Funct. 1997 Feb;22(1):163–171. doi: 10.1247/csf.22.163. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES