Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 15;338(Pt 1):153–159.

Hydrogen bonding and protein perturbation in beta-lactam acyl-enzymes of Streptococcus pneumoniae penicillin-binding protein PBP2x.

R S Chittock 1, S Ward 1, A S Wilkinson 1, P Caspers 1, B Mensch 1, M G Page 1, C W Wharton 1
PMCID: PMC1220037  PMID: 9931311

Abstract

A soluble form of Streptococcus pneumoniae PBP2x, a molecular target of penicillin and cephalosporin antibiotics, has been expressed and purified. IR difference spectra of PBP2x acylated with benzylpenicillin, cloxacillin, cephalothin and ceftriaxone have been measured. The difference spectra show two main features. The ester carbonyl vibration of the acyl-enzyme is ascribed to a small band between 1710 and 1720 cm-1, whereas a much larger band at approx. 1640 cm-1 is ascribed to a perturbation in the structure of the enzyme, which occurs on acylation. The protein perturbation has been interpreted as occurring in beta-sheet. The acyl-enzyme formed with benzylpenicillin shows the lowest ester carbonyl vibration frequency, which is interpreted to mean that the carbonyl oxygen is the most strongly hydrogen-bonded in the oxyanion hole of the antibiotics studied. The semi-synthetic penicillin cloxacillin is apparently less well organized in the active site and shows two partially overlapping ester carbonyl bands. The penicillin acyl-enzyme has been shown to deacylate more slowly than that formed with cloxacillin. This demonstrates that the natural benzylpenicillin forms a more optimized and better-bonded acyl-enzyme and that this in turn leads to the stabilization of the acyl-enzyme required for effective action in the inhibition of PBP2x. The energetics of hydrogen bonding in the several acyl-enzymes is discussed and comparison is made with carbonyl absorption frequencies of model ethyl esters in a range of organic solvents. A comparison of hydrolytic deacylation with hydroxaminolysis for both chymotryspin and PBP2x leads to the conclusion that deacylation is uncatalysed.

Full Text

The Full Text of this article is available as a PDF (158.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belasco J. G., Knowles J. R. Direct observation of substrate distortion by triosephosphate isomerase using Fourier transform infrared spectroscopy. Biochemistry. 1980 Feb 5;19(3):472–477. doi: 10.1021/bi00544a012. [DOI] [PubMed] [Google Scholar]
  2. Belasco J. G., Knowles J. R. Polarization of substrate carbonyl groups by yeast aldolase: investigation by Fourier transform infrared spectroscopy. Biochemistry. 1983 Jan 4;22(1):122–129. doi: 10.1021/bi00270a018. [DOI] [PubMed] [Google Scholar]
  3. CAPLOW M., JENCKS W. P. THE CHYMOTRYPSIN-CATALYZED HYDROLYSIS AND SYNTHESIS OF N-ACETYL-L-TYROSINE HYDROXAMIC ACID. J Biol Chem. 1964 May;239:1640–1652. [PubMed] [Google Scholar]
  4. Cartwright S. J., Fink A. L. Isolation of a covalent intermediate in beta -lactamase I catalysis. FEBS Lett. 1982 Jan 25;137(2):186–188. doi: 10.1016/0014-5793(82)80345-1. [DOI] [PubMed] [Google Scholar]
  5. Chen C. C., Rahil J., Pratt R. F., Herzberg O. Structure of a phosphonate-inhibited beta-lactamase. An analog of the tetrahedral transition state/intermediate of beta-lactam hydrolysis. J Mol Biol. 1993 Nov 5;234(1):165–178. doi: 10.1006/jmbi.1993.1571. [DOI] [PubMed] [Google Scholar]
  6. Davis M. New food products aid management of renal insufficiency. J Am Diet Assoc. 1991 Oct;91(10):1213–1217. [PubMed] [Google Scholar]
  7. Dawes P. T., Davis M. J., Jones P., Ziade F. Monitoring of rheumatoid arthritis. Lancet. 1989 Nov 18;2(8673):1219–1219. doi: 10.1016/s0140-6736(89)91826-6. [DOI] [PubMed] [Google Scholar]
  8. Faraci W. S., Pratt R. F. Mechanism of inhibition of the PC1 beta-lactamase of Staphylococcus aureus by cephalosporins: importance of the 3'-leaving group. Biochemistry. 1985 Feb 12;24(4):903–910. doi: 10.1021/bi00325a014. [DOI] [PubMed] [Google Scholar]
  9. Frère J. M., Joris B. Penicillin-sensitive enzymes in peptidoglycan biosynthesis. Crit Rev Microbiol. 1985;11(4):299–396. doi: 10.3109/10408418409105906. [DOI] [PubMed] [Google Scholar]
  10. Ghuysen J. M. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 1994 Oct;2(10):372–380. doi: 10.1016/0966-842x(94)90614-9. [DOI] [PubMed] [Google Scholar]
  11. Ghuysen J. M. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol. 1991;45:37–67. doi: 10.1146/annurev.mi.45.100191.000345. [DOI] [PubMed] [Google Scholar]
  12. INWARD P. W., JENCKS W. P. THE REACTIVITY OF NUCLEOPHILIC REAGENTS WITH FUROYL-CHYMOTRYPSIN. J Biol Chem. 1965 May;240:1986–1996. [PubMed] [Google Scholar]
  13. Jamin M., Damblon C., Millier S., Hakenbeck R., Frère J. M. Penicillin-binding protein 2x of Streptococcus pneumoniae: enzymic activities and interactions with beta-lactams. Biochem J. 1993 Jun 15;292(Pt 3):735–741. doi: 10.1042/bj2920735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jamin M., Wilkin J. M., Frère J. M. Bacterial DD-transpeptidases and penicillin. Essays Biochem. 1995;29:1–24. [PubMed] [Google Scholar]
  15. Johal S. S., White A. J., Wharton C. W. Effect of specificity on ligand conformation in acyl-chymotrypsins. Biochem J. 1994 Jan 15;297(Pt 2):281–287. doi: 10.1042/bj2970281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laible G., Keck W., Lurz R., Mottl H., Frère J. M., Jamin M., Hakenbeck R. Penicillin-binding protein 2x of Streptococcus pneumoniae. Expression in Escherichia coli and purification of a soluble enzymatically active derivative. Eur J Biochem. 1992 Aug 1;207(3):943–949. doi: 10.1111/j.1432-1033.1992.tb17128.x. [DOI] [PubMed] [Google Scholar]
  17. Page M. G. The reaction of cephalosporins with penicillin-binding protein 1b gamma from Escherichia coli. Biochim Biophys Acta. 1994 Apr 13;1205(2):199–206. doi: 10.1016/0167-4838(94)90234-8. [DOI] [PubMed] [Google Scholar]
  18. Pares S., Mouz N., Pétillot Y., Hakenbeck R., Dideberg O. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat Struct Biol. 1996 Mar;3(3):284–289. doi: 10.1038/nsb0396-284. [DOI] [PubMed] [Google Scholar]
  19. Strynadka N. C., Adachi H., Jensen S. E., Johns K., Sielecki A., Betzel C., Sutoh K., James M. N. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution. Nature. 1992 Oct 22;359(6397):700–705. doi: 10.1038/359700a0. [DOI] [PubMed] [Google Scholar]
  20. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  21. White A. J., Drabble K., Ward S., Wharton C. W. Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution. Biochem J. 1992 Oct 1;287(Pt 1):317–323. doi: 10.1042/bj2870317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. White A. J., Wharton C. W. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences. Biochem J. 1990 Sep 15;270(3):627–637. doi: 10.1042/bj2700627. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES