Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Feb 15;338(Pt 1):211–219.

Purification, characterization and molecular cloning of trichoanguin, a novel type I ribosome-inactivating protein from the seeds of Trichosanthes anguina.

L P Chow 1, M H Chou 1, C Y Ho 1, C C Chuang 1, F M Pan 1, S H Wu 1, J Y Lin 1
PMCID: PMC1220044  PMID: 9931318

Abstract

The seeds of the plant Trichosanthes anguina contain a type I ribosome-inactivating protein (RIP), designated trichoanguin, which was purified to apparent homogeneity by the combined use of ion-exchange chromatographies, i.e. first with DE-52 cellulose and then with CM-52 cellulose. The protein was found to be a glycoprotein with a molecular mass of 35 kDa and a pI of 9.1. It strongly inhibits the protein synthesis of rabbit reticulocyte lysate, with an IC50 of 0.08 nM, but only weakly that of HeLa cells, with an IC50 of 6 microM. Trichoanguin cleaves at the A4324 site of rat 28 S rRNA by its N-glycosidase activity. The cDNA of trichoanguin consists of 1039 nt and encodes an open reading frame coding for a polypeptide of 294 amino acid residues. The first 19 residues of this polypeptide encode a signal peptide sequence and the last 30 residues comprise an extension at its C-terminus. There are four potential glycosylation sites, located at Asn-51, Asn-65, Asn-201 and Asn-226. A comparison of the amino acid sequence of trichoanguin with those of RIPs such as trichosanthin, alpha-momorcharin, ricin A-chain and abrin A-chain reveals 55%, 48%, 36% and 34% identity respectively. Molecular homology modelling of trichoanguin indicates that its tertiary structure closely resembles those of trichosanthin and alpha-momorcharin. The large structural similarities might account for their common biological effects such as an abortifacient, an anti-tumour agent and anti-HIV-1 activities. Trichoanguin contains two cysteine residues, Cys-32 and Cys-155, with the former being likely to be located on the protein surface, which is directly amenable for conjugation with antibodies to form immunoconjugates. It is therefore conceivable that trichoanguin might be a better type I RIP than any other so far examined for the preparation of immunotoxins, with a great potential for application as an effective chemotherapeutic agent for the treatment of cancer.

Full Text

The Full Text of this article is available as a PDF (316.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbieri L., Zamboni M., Lorenzoni E., Montanaro L., Sperti S., Stirpe F. Inhibition of protein synthesis in vitro by proteins from the seeds of Momordica charantia (bitter pear melon). Biochem J. 1980 Feb 15;186(2):443–452. doi: 10.1042/bj1860443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benatti L., Nitti G., Solinas M., Valsasina B., Vitale A., Ceriotti A., Soria M. R. A Saporin-6 cDNA containing a precursor sequence coding for a carboxyl-terminal extension. FEBS Lett. 1991 Oct 21;291(2):285–288. doi: 10.1016/0014-5793(91)81303-p. [DOI] [PubMed] [Google Scholar]
  3. Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  4. Butterworth A. G., Lord J. M. Ricin and Ricinus communis agglutinin subunits are all derived from a single-size polypeptide precursor. Eur J Biochem. 1983 Dec 1;137(1-2):57–65. doi: 10.1111/j.1432-1033.1983.tb07795.x. [DOI] [PubMed] [Google Scholar]
  5. Byers V. S., Levin A. S., Malvino A., Waites L., Robins R. A., Baldwin R. W. A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents. AIDS Res Hum Retroviruses. 1994 Apr;10(4):413–420. doi: 10.1089/aid.1994.10.413. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Chow T. P., Feldman R. A., Lovett M., Piatak M. Isolation and DNA sequence of a gene encoding alpha-trichosanthin, a type I ribosome-inactivating protein. J Biol Chem. 1990 May 25;265(15):8670–8674. [PubMed] [Google Scholar]
  8. Francisco J. A., Gawlak S. L., Siegall C. B. Construction, expression, and characterization of BD1-G28-5 sFv, a single-chain anti-CD40 immunotoxin containing the ribosome-inactivating protein bryodin 1. J Biol Chem. 1997 Sep 26;272(39):24165–24169. doi: 10.1074/jbc.272.39.24165. [DOI] [PubMed] [Google Scholar]
  9. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang Q., Liu S., Tang Y., Jin S., Wang Y. Studies on crystal structures, active-centre geometry and depurinating mechanism of two ribosome-inactivating proteins. Biochem J. 1995 Jul 1;309(Pt 1):285–298. [PMC free article] [PubMed] [Google Scholar]
  11. Hubbard T. J., Murzin A. G., Brenner S. E., Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res. 1997 Jan 1;25(1):236–239. doi: 10.1093/nar/25.1.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hung C. H., Lee M. C., Chen J. K., Lin J. Y. Cloning and expression of three abrin A-chains and their mutants derived by site-specific mutagenesis in Escherichia coli. Eur J Biochem. 1994 Jan 15;219(1-2):83–87. doi: 10.1111/j.1432-1033.1994.tb19917.x. [DOI] [PubMed] [Google Scholar]
  13. Hung C. H., Lee M. C., Lee T. C., Lin J. Y. Primary structure of three distinct isoabrins determined by cDNA sequencing. Conservation and significance. J Mol Biol. 1993 Jan 5;229(1):263–267. doi: 10.1006/jmbi.1993.1029. [DOI] [PubMed] [Google Scholar]
  14. Irvin J. D. Purification and partial characterization of the antiviral protein from Phytolacca americana which inhibits eukaryotic protein synthesis. Arch Biochem Biophys. 1975 Aug;169(2):522–528. doi: 10.1016/0003-9861(75)90195-2. [DOI] [PubMed] [Google Scholar]
  15. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  16. Kahn J. O., Gorelick K. J., Gatti G., Arri C. J., Lifson J. D., Gambertoglio J. G., Bostrom A., Williams R. Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex. Antimicrob Agents Chemother. 1994 Feb;38(2):260–267. doi: 10.1128/aac.38.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kamo M., Tsugita A. Carboxypeptidase digestion in the presence of detergents. J Biochem. 1987 Aug;102(2):243–246. doi: 10.1093/oxfordjournals.jbchem.a122047. [DOI] [PubMed] [Google Scholar]
  18. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lamb F. I., Roberts L. M., Lord J. M. Nucleotide sequence of cloned cDNA coding for preproricin. Eur J Biochem. 1985 Apr 15;148(2):265–270. doi: 10.1111/j.1432-1033.1985.tb08834.x. [DOI] [PubMed] [Google Scholar]
  21. Lambert J. M., Blättler W. A., McIntyre G. D., Goldmacher V. S., Scott C. F., Jr Immunotoxins containing single-chain ribosome-inactivating proteins. Cancer Treat Res. 1988;37:175–209. doi: 10.1007/978-1-4613-1083-9_12. [DOI] [PubMed] [Google Scholar]
  22. Lee-Huang S., Huang P. L., Nara P. L., Chen H. C., Kung H. F., Huang P., Huang H. I., Huang P. L. MAP 30: a new inhibitor of HIV-1 infection and replication. FEBS Lett. 1990 Oct 15;272(1-2):12–18. doi: 10.1016/0014-5793(90)80438-o. [DOI] [PubMed] [Google Scholar]
  23. Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
  24. May M. J., Hartley M. R., Roberts L. M., Krieg P. A., Osborn R. W., Lord J. M. Ribosome inactivation by ricin A chain: a sensitive method to assess the activity of wild-type and mutant polypeptides. EMBO J. 1989 Jan;8(1):301–308. doi: 10.1002/j.1460-2075.1989.tb03377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McGrath M. S., Hwang K. M., Caldwell S. E., Gaston I., Luk K. C., Wu P., Ng V. L., Crowe S., Daniels J., Marsh J. GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2844–2848. doi: 10.1073/pnas.86.8.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mlsna D., Monzingo A. F., Katzin B. J., Ernst S., Robertus J. D. Structure of recombinant ricin A chain at 2.3 A. Protein Sci. 1993 Mar;2(3):429–435. doi: 10.1002/pro.5560020315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Oda T., Aizono Y., Funatsu G. Binding and cytotoxicity of Ricinus communis lectins to HeLa cells, Sarcoma 180 ascites tumor cells and erythrocytes. J Biochem. 1984 Aug;96(2):377–384. doi: 10.1093/oxfordjournals.jbchem.a134848. [DOI] [PubMed] [Google Scholar]
  28. Piatak M., Lane J. A., Laird W., Bjorn M. J., Wang A., Williams M. Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive. J Biol Chem. 1988 Apr 5;263(10):4837–4843. [PubMed] [Google Scholar]
  29. Ramakrishnan S., Fryxell D., Mohanraj D., Olson M., Li B. Y. Cytotoxic conjugates containing translational inhibitory proteins. Annu Rev Pharmacol Toxicol. 1992;32:579–621. doi: 10.1146/annurev.pa.32.040192.003051. [DOI] [PubMed] [Google Scholar]
  30. Ramakrishnan S., Houston L. L. Prevention of growth of leukemia cells in mice by monoclonal antibodies directed against Thy 1.1 antigen disulfide linked to two ribosomal inhibitors:pokeweed antiviral protein or ricin A chain. Cancer Res. 1984 Apr;44(4):1398–1404. [PubMed] [Google Scholar]
  31. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  32. Sippl M. J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993 Dec;17(4):355–362. doi: 10.1002/prot.340170404. [DOI] [PubMed] [Google Scholar]
  33. Stirpe F., Barbieri L., Battelli M. G., Falasca A. I., Abbondanza A., Lorenzoni E., Stevens W. A. Bryodin, a ribosome-inactivating protein from the roots of Bryonia dioica L. (white bryony). Biochem J. 1986 Dec 15;240(3):659–665. doi: 10.1042/bj2400659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stirpe F., Barbieri L., Battelli M. G., Soria M., Lappi D. A. Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N Y) 1992 Apr;10(4):405–412. doi: 10.1038/nbt0492-405. [DOI] [PubMed] [Google Scholar]
  35. Stirpe F., Barbieri L. Ribosome-inactivating proteins up to date. FEBS Lett. 1986 Jan 20;195(1-2):1–8. doi: 10.1016/0014-5793(86)80118-1. [DOI] [PubMed] [Google Scholar]
  36. Stirpe F., Gasperi-Campani A., Barbieri L., Falasca A., Abbondanza A., Stevens W. A. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem J. 1983 Dec 15;216(3):617–625. doi: 10.1042/bj2160617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stirpe F., Williams D. G., Onyon L. J., Legg R. F., Stevens W. A. Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). Biochem J. 1981 May 1;195(2):399–405. doi: 10.1042/bj1950399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tahirov T. H., Lu T. H., Liaw Y. C., Chen Y. L., Lin J. Y. Crystal structure of abrin-a at 2.14 A. J Mol Biol. 1995 Jul 14;250(3):354–367. doi: 10.1006/jmbi.1995.0382. [DOI] [PubMed] [Google Scholar]
  39. Thorpe P. E., Brown A. N., Ross W. C., Cumber A. J., Detre S. I., Edwards D. C., Davies A. J., Stirpe F. Cytotoxicity acquired by conjugation of an anti-Thy1.1 monoclonal antibody and the ribosome-inactivating protein, gelonin. Eur J Biochem. 1981 Jun 1;116(3):447–454. doi: 10.1111/j.1432-1033.1981.tb05356.x. [DOI] [PubMed] [Google Scholar]
  40. WETTSTEIN F. O., STAEHELIN T., NOLL H. Ribosomal aggregate engaged in protein synthesis: characterization of the ergosome. Nature. 1963 Feb 2;197:430–435. doi: 10.1038/197430a0. [DOI] [PubMed] [Google Scholar]
  41. Wang Q. C., Ying W. B., Xie H., Zhang Z. C., Yang Z. H., Ling L. Q. Trichosanthin-monoclonal antibody conjugate specifically cytotoxic to human hepatoma cells in vitro. Cancer Res. 1991 Jul 1;51(13):3353–3355. [PubMed] [Google Scholar]
  42. Xiong J. P., Xia Z. X., Wang Y. Crystal structure of trichosanthin-NADPH complex at 1.7 A resolution reveals active-site architecture. Nat Struct Biol. 1994 Oct;1(10):695–700. doi: 10.1038/nsb1094-695. [DOI] [PubMed] [Google Scholar]
  43. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]
  44. Zarling J. M., Moran P. A., Haffar O., Sias J., Richman D. D., Spina C. A., Myers D. E., Kuebelbeck V., Ledbetter J. A., Uckun F. M. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Nature. 1990 Sep 6;347(6288):92–95. doi: 10.1038/347092a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES