Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 1;338(Pt 2):295–303.

Overexpression of CuZn superoxide dismutase protects RAW 264.7 macrophages against nitric oxide cytotoxicity.

F Brockhaus 1, B Brüne 1
PMCID: PMC1220054  PMID: 10024504

Abstract

Initiation of nitric oxide (NO.)-mediated apoptotic cell death in RAW 264.7 macrophages is associated with up-regulation of mitochondrial manganese superoxide dismutase (MnSOD; SOD2) and down-regulation of cytosolic copper zinc superoxide dismutase (CuZnSOD; SOD1) at their individual mRNA and protein levels. To evaluate the decreased CuZnSOD expression and the initiation of apoptosis we stably transfected macrophages to overexpress human CuZnSOD. Individual clones revealed a 2-fold increase in CuZnSOD activity. Expression of a functional and thus protective CuZnSOD was verified by attenuated superoxide (O2(.)-)-mediated apoptotic as well as necrotic cell death. In this study we showed that SOD-overexpressing macrophages (R-SOD1-12) were also protected against NO.-initiated programmed cell death. Protection was substantial towards NO. derived from exogenously added NO donors or when NO. was generated by inducible NO synthase activation, and was evident at the level of p53 accumulation, caspase activation and DNA fragmentation. Stimulation of parent and SOD-overexpressing cells with a combination of lipopolysaccharide and murine interferon gamma produced equivalent amounts of nitrite/nitrate, which ruled out attenuated inducible NO. synthase activity during protection. Because protection by a O2(.)--scavenging system during NO. -intoxication implies a role of NO. and O2(.)- in the progression of cell damage, we used uric acid to delineate the role of peroxynitrite during NO.-elicited apoptosis. The peroxynitrite scavenger uric acid left S-nitrosoglutathione or spermine-NO-elicited apoptosis unaltered, blocking only 3-morpholinosydnonimine-mediated cell death. As a result we exclude peroxynitrite from contributing, to any major extent, to NO. -mediated apoptosis. Therefore protection observed with CuZnSOD overexpression is unlikely to stem from interference with peroxynitrite formation and/or action. Unequivocally, the down-regulation of CuZnSOD is associated with NO. cytotoxicity, whereas CuZnSOD overexpression protects macrophages from apoptosis.

Full Text

The Full Text of this article is available as a PDF (249.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
  2. Brockhaus F., Brüne B. U937 apoptotic cell death by nitric oxide: Bcl-2 downregulation and caspase activation. Exp Cell Res. 1998 Jan 10;238(1):33–41. doi: 10.1006/excr.1997.3778. [DOI] [PubMed] [Google Scholar]
  3. Brüne B., von Knethen A., Sandau K. B. Nitric oxide and its role in apoptosis. Eur J Pharmacol. 1998 Jun 26;351(3):261–272. doi: 10.1016/s0014-2999(98)00274-x. [DOI] [PubMed] [Google Scholar]
  4. Cho G., Kang S., Seo S. J., Kim Y., Jung G. The transcriptional repression of the human Cu/Zn superoxide dismutase(sod1) gene by the anticancer drug, mitomycin C(MMC). Biochem Mol Biol Int. 1997 Aug;42(5):949–956. doi: 10.1080/15216549700203391. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cohen G. M. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326(Pt 1):1–16. doi: 10.1042/bj3260001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crow J. P., Beckman J. S. Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv Pharmacol. 1995;34:17–43. doi: 10.1016/s1054-3589(08)61079-0. [DOI] [PubMed] [Google Scholar]
  8. Elroy-Stein O., Bernstein Y., Groner Y. Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J. 1986 Mar;5(3):615–622. doi: 10.1002/j.1460-2075.1986.tb04255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elstner E. F., Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem. 1976 Feb;70(2):616–620. doi: 10.1016/0003-2697(76)90488-7. [DOI] [PubMed] [Google Scholar]
  10. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
  11. Hohmeier H. E., Thigpen A., Tran V. V., Davis R., Newgard C. B. Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1beta- induced cytotoxicity and reduces nitric oxide production. J Clin Invest. 1998 May 1;101(9):1811–1820. doi: 10.1172/JCI1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hooper D. C., Spitsin S., Kean R. B., Champion J. M., Dickson G. M., Chaudhry I., Koprowski H. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):675–680. doi: 10.1073/pnas.95.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huang T. T., Carlson E. J., Leadon S. A., Epstein C. J. Relationship of resistance to oxygen free radicals to CuZn-superoxide dismutase activity in transgenic, transfected, and trisomic cells. FASEB J. 1992 Feb 1;6(3):903–910. doi: 10.1096/fasebj.6.3.1740238. [DOI] [PubMed] [Google Scholar]
  14. Huang T. T., Yasunami M., Carlson E. J., Gillespie A. M., Reaume A. G., Hoffman E. K., Chan P. H., Scott R. W., Epstein C. J. Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch Biochem Biophys. 1997 Aug 15;344(2):424–432. doi: 10.1006/abbi.1997.0237. [DOI] [PubMed] [Google Scholar]
  15. Kane D. J., Sarafian T. A., Anton R., Hahn H., Gralla E. B., Valentine J. S., Ord T., Bredesen D. E. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993 Nov 19;262(5137):1274–1277. doi: 10.1126/science.8235659. [DOI] [PubMed] [Google Scholar]
  16. Kinscherf R., Claus R., Wagner M., Gehrke C., Kamencic H., Hou D., Nauen O., Schmiedt W., Kovacs G., Pill J. Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J. 1998 Apr;12(6):461–467. doi: 10.1096/fasebj.12.6.461. [DOI] [PubMed] [Google Scholar]
  17. Lamarque D., Whittle B. J. Involvement of superoxide and xanthine oxidase in neutrophil-independent rat gastric damage induced by NO donors. Br J Pharmacol. 1995 Sep;116(2):1843–1848. doi: 10.1111/j.1476-5381.1995.tb16672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
  19. MacMicking J., Xie Q. W., Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350. doi: 10.1146/annurev.immunol.15.1.323. [DOI] [PubMed] [Google Scholar]
  20. McConkey D. J., Nicotera P., Hartzell P., Bellomo G., Wyllie A. H., Orrenius S. Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration. Arch Biochem Biophys. 1989 Feb 15;269(1):365–370. doi: 10.1016/0003-9861(89)90119-7. [DOI] [PubMed] [Google Scholar]
  21. Mehlen P., Kretz-Remy C., Préville X., Arrigo A. P. Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J. 1996 Jun 3;15(11):2695–2706. [PMC free article] [PubMed] [Google Scholar]
  22. Messmer U. K., Brüne B. Nitric oxide (NO) in apoptotic versus necrotic RAW 264.7 macrophage cell death: the role of NO-donor exposure, NAD+ content, and p53 accumulation. Arch Biochem Biophys. 1996 Mar 1;327(1):1–10. doi: 10.1006/abbi.1996.0085. [DOI] [PubMed] [Google Scholar]
  23. Messmer U. K., Brüne B. Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem J. 1996 Oct 1;319(Pt 1):299–305. doi: 10.1042/bj3190299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Messmer U. K., Lapetina E. G., Brüne B. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C- and protein kinase A-activating compounds. Mol Pharmacol. 1995 Apr;47(4):757–765. [PubMed] [Google Scholar]
  25. Mirochnitchenko O., Inouye M. Effect of overexpression of human Cu,Zn superoxide dismutase in transgenic mice on macrophage functions. J Immunol. 1996 Feb 15;156(4):1578–1586. [PubMed] [Google Scholar]
  26. Murphy M. E., Sies H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10860–10864. doi: 10.1073/pnas.88.23.10860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  28. Patel T., Gores G. J., Kaufmann S. H. The role of proteases during apoptosis. FASEB J. 1996 Apr;10(5):587–597. doi: 10.1096/fasebj.10.5.8621058. [DOI] [PubMed] [Google Scholar]
  29. Pfeiffer S., Schrammel A., Koesling D., Schmidt K., Mayer B. Molecular actions of a Mn(III)Porphyrin superoxide dismutase mimetic and peroxynitrite scavenger: reaction with nitric oxide and direct inhibition of NO synthase and soluble guanylyl cyclase. Mol Pharmacol. 1998 Apr;53(4):795–800. doi: 10.1124/mol.53.4.795. [DOI] [PubMed] [Google Scholar]
  30. Poderoso J. J., Carreras M. C., Lisdero C., Riobó N., Schöpfer F., Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996 Apr 1;328(1):85–92. doi: 10.1006/abbi.1996.0146. [DOI] [PubMed] [Google Scholar]
  31. Sano H., Hirai M., Saito H., Nakashima I., Isobe K. I. A nitric oxide-releasing reagent, S-nitroso-N-acetylpenicillamine, enhances the expression of superoxide dismutases mRNA in the murine macrophage cell line RAW264-7. Immunology. 1997 Sep;92(1):118–122. doi: 10.1046/j.1365-2567.1997.00322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  33. Schwartzman R. A., Cidlowski J. A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev. 1993 Apr;14(2):133–151. doi: 10.1210/edrv-14-2-133. [DOI] [PubMed] [Google Scholar]
  34. Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993 Jul 15;215(2):213–219. doi: 10.1111/j.1432-1033.1993.tb18025.x. [DOI] [PubMed] [Google Scholar]
  35. Szabó C., Day B. J., Salzman A. L. Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 1996 Feb 26;381(1-2):82–86. doi: 10.1016/0014-5793(96)00087-7. [DOI] [PubMed] [Google Scholar]
  36. Szabó C., Salzman A. L. Endogenous peroxynitrite is involved in the inhibition of mitochondrial respiration in immuno-stimulated J774.2 macrophages. Biochem Biophys Res Commun. 1995 Apr 17;209(2):739–743. doi: 10.1006/bbrc.1995.1561. [DOI] [PubMed] [Google Scholar]
  37. Teixeira H. D., Schumacher R. I., Meneghini R. Lower intracellular hydrogen peroxide levels in cells overexpressing CuZn-superoxide dismutase. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7872–7875. doi: 10.1073/pnas.95.14.7872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  39. Troy C. M., Derossi D., Prochiantz A., Greene L. A., Shelanski M. L. Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J Neurosci. 1996 Jan;16(1):253–261. doi: 10.1523/JNEUROSCI.16-01-00253.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vaux D. L., Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2239–2244. doi: 10.1073/pnas.93.6.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Visner G. A., Dougall W. C., Wilson J. M., Burr I. A., Nick H. S. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem. 1990 Feb 15;265(5):2856–2864. [PubMed] [Google Scholar]
  42. Walker N. I., Harmon B. V., Gobé G. C., Kerr J. F. Patterns of cell death. Methods Achiev Exp Pathol. 1988;13:18–54. [PubMed] [Google Scholar]
  43. Weisz A., Cicatiello L., Esumi H. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J. 1996 May 15;316(Pt 1):209–215. doi: 10.1042/bj3160209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  45. Yamakura F., Taka H., Fujimura T., Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem. 1998 Jun 5;273(23):14085–14089. doi: 10.1074/jbc.273.23.14085. [DOI] [PubMed] [Google Scholar]
  46. Zhivotovsky B., Burgess D. H., Vanags D. M., Orrenius S. Involvement of cellular proteolytic machinery in apoptosis. Biochem Biophys Res Commun. 1997 Jan 23;230(3):481–488. doi: 10.1006/bbrc.1996.6016. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES