Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 1;338(Pt 2):317–323.

Proteoglycan involvement in polyamine uptake.

M Belting 1, S Persson 1, L A Fransson 1
PMCID: PMC1220056  PMID: 10024506

Abstract

We have evaluated the possible role of proteoglycans in the uptake of spermine by human lung fibroblasts. Exogenous glycosaminoglycans behaved as competitive inhibitors of spermine uptake, the most efficient being heparan sulphate (Ki=0.16+/-0.04 microM). Treatment of fibroblasts with either heparan sulphate lyase, p-nitrophenyl-O-beta-D-xylopyranoside or chlorate reduced spermine uptake considerably, whereas chondroitin sulphate lyase had a limited effect. Inhibition of polyamine biosynthesis with alpha-difluoromethylornithine resulted in an increase of cell-associated heparan sulphate proteoglycans exhibiting higher affinity for spermine. The data indicate a specific role for heparan sulphate proteoglycans in the uptake of spermine by fibroblasts. Spermine uptake by pgsD-677, a mutant Chinese hamster ovary cell defective in heparan sulphate biosynthesis, was only moderately reduced (20%) compared with wild-type cells. Treatment of mutant cells with the above-mentioned xyloside resulted in a greater reduction of endogenous proteoglycan production as well as a higher inhibition of spermine uptake than in wild-type cells. Moreover, treatment with chondroitin sulphate lyase resulted in a selective inhibition of uptake in mutant cells, indicating a role for chondroitin/dermatan sulphate proteoglycans in the uptake of spermine by these cells. Fibroblasts, made growth-dependent on exogenous spermine by alpha-difluoromethylornithine treatment, were growth-inhibited by heparan sulphate or beta-D-xyloside, which might have future therapeutical implications.

Full Text

The Full Text of this article is available as a PDF (145.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auvinen M., Paasinen A., Andersson L. C., Hölttä E. Ornithine decarboxylase activity is critical for cell transformation. Nature. 1992 Nov 26;360(6402):355–358. doi: 10.1038/360355a0. [DOI] [PubMed] [Google Scholar]
  2. Belting M., Fransson L. A. The growth promoter spermine interacts specifically with dermatan sulfate regions that are rich in L-iduronic acid and possess antiproliferative activity. Glycoconj J. 1993 Dec;10(6):453–460. doi: 10.1007/BF00737966. [DOI] [PubMed] [Google Scholar]
  3. Belting M., Havsmark B., Jönsson M., Persson S., Fransson L. A. Heparan sulphate/heparin glycosaminoglycans with strong affinity for the growth-promoter spermine have high antiproliferative activity. Glycobiology. 1996 Mar;6(2):121–129. doi: 10.1093/glycob/6.2.121. [DOI] [PubMed] [Google Scholar]
  4. Bernfield M., Kokenyesi R., Kato M., Hinkes M. T., Spring J., Gallo R. L., Lose E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393. doi: 10.1146/annurev.cb.08.110192.002053. [DOI] [PubMed] [Google Scholar]
  5. Edgren G., Havsmark B., Jönsson M., Fransson L. A. Glypican (heparan sulfate proteoglycan) is palmitoylated, deglycanated and reglycanated during recycling in skin fibroblasts. Glycobiology. 1997 Feb;7(1):103–112. doi: 10.1093/glycob/7.1.103. [DOI] [PubMed] [Google Scholar]
  6. Fransson L. A., Sjöberg I., Havsmark B. Structural studies on heparan sulphates. Characterization of oligosaccharides; obtained by periodate oxidation and alkaline elimination. Eur J Biochem. 1980 May;106(1):59–69. [PubMed] [Google Scholar]
  7. Gallagher J. T. The extended family of proteoglycans: social residents of the pericellular zone. Curr Opin Cell Biol. 1989 Dec;1(6):1201–1218. doi: 10.1016/s0955-0674(89)80072-9. [DOI] [PubMed] [Google Scholar]
  8. Gillies R. J., Didier N., Denton M. Determination of cell number in monolayer cultures. Anal Biochem. 1986 Nov 15;159(1):109–113. doi: 10.1016/0003-2697(86)90314-3. [DOI] [PubMed] [Google Scholar]
  9. Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
  10. Higashiyama S., Abraham J. A., Klagsbrun M. Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J Cell Biol. 1993 Aug;122(4):933–940. doi: 10.1083/jcb.122.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huber M., Pelletier J. G., Torossian K., Dionne P., Gamache I., Charest-Gaudreault R., Audette M., Poulin R. 2,2'-Dithiobis(N-ethyl-spermine-5-carboxamide) is a high affinity, membrane-impermeant antagonist of the mammalian polyamine transport system. J Biol Chem. 1996 Nov 1;271(44):27556–27563. doi: 10.1074/jbc.271.44.27556. [DOI] [PubMed] [Google Scholar]
  12. Iozzo R. V., Murdoch A. D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996 Apr;10(5):598–614. [PubMed] [Google Scholar]
  13. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  14. Kobayashi M., Iseki K., Sugawara M., Miyazaki K. The diversity of Na(+)-independent uptake systems for polyamines in rat intestinal brush-border membrane vesicles. Biochim Biophys Acta. 1993 Sep 19;1151(2):161–167. doi: 10.1016/0005-2736(93)90100-e. [DOI] [PubMed] [Google Scholar]
  15. Lidholt K., Weinke J. L., Kiser C. S., Lugemwa F. N., Bame K. J., Cheifetz S., Massagué J., Lindahl U., Esko J. D. A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2267–2271. doi: 10.1073/pnas.89.6.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Malström A., Carlstedt I., Aberg L., Fransson L. A. The copolymeric structure of dermatan sulphate produced by cultured human fibroblasts. Different distribution of iduronic acid and glucuronic acid-containing units in soluble and cell-associated glycans. Biochem J. 1975 Dec;151(3):477–489. doi: 10.1042/bj1510477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marton L. J., Pegg A. E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995;35:55–91. doi: 10.1146/annurev.pa.35.040195.000415. [DOI] [PubMed] [Google Scholar]
  18. Mislick K. A., Baldeschwieler J. D. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12349–12354. doi: 10.1073/pnas.93.22.12349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moshier J. A., Dosescu J., Skunca M., Luk G. D. Transformation of NIH/3T3 cells by ornithine decarboxylase overexpression. Cancer Res. 1993 Jun 1;53(11):2618–2622. [PubMed] [Google Scholar]
  20. Mounkes L. C., Zhong W., Cipres-Palacin G., Heath T. D., Debs R. J. Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo. J Biol Chem. 1998 Oct 2;273(40):26164–26170. doi: 10.1074/jbc.273.40.26164. [DOI] [PubMed] [Google Scholar]
  21. Okayama M., Kimata K., Suzuki S. The influence of p-nitrophenyl beta-d-xyloside on the synthesis of proteochondroitin sulfate by slices of embryonic chick cartilage. J Biochem. 1973 Nov;74(5):1069–1073. [PubMed] [Google Scholar]
  22. Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Persson L., Holm I., Ask A., Heby O. Curative effect of DL-2-difluoromethylornithine on mice bearing mutant L1210 leukemia cells deficient in polyamine uptake. Cancer Res. 1988 Sep 1;48(17):4807–4811. [PubMed] [Google Scholar]
  24. Poulin R., Lu L., Ackermann B., Bey P., Pegg A. E. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem. 1992 Jan 5;267(1):150–158. [PubMed] [Google Scholar]
  25. Rapraeger A. C., Krufka A., Olwin B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991 Jun 21;252(5013):1705–1708. doi: 10.1126/science.1646484. [DOI] [PubMed] [Google Scholar]
  26. Seiler N., Delcros J. G., Moulinoux J. P. Polyamine transport in mammalian cells. An update. Int J Biochem Cell Biol. 1996 Aug;28(8):843–861. doi: 10.1016/1357-2725(96)00021-0. [DOI] [PubMed] [Google Scholar]
  27. Shieh M. T., WuDunn D., Montgomery R. I., Esko J. D., Spear P. G. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol. 1992 Mar;116(5):1273–1281. doi: 10.1083/jcb.116.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
  29. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  30. Westergren-Thorsson G., Onnervik P. O., Fransson L. A., Malmström A. Proliferation of cultured fibroblasts is inhibited by L-iduronate-containing glycosaminoglycans. J Cell Physiol. 1991 Jun;147(3):523–530. doi: 10.1002/jcp.1041470319. [DOI] [PubMed] [Google Scholar]
  31. Westergren-Thorsson G., Persson S., Isaksson A., Onnervik P. O., Malmström A., Fransson L. A. L-iduronate-rich glycosaminoglycans inhibit growth of normal fibroblasts independently of serum or added growth factors. Exp Cell Res. 1993 May;206(1):93–99. doi: 10.1006/excr.1993.1124. [DOI] [PubMed] [Google Scholar]
  32. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES