Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 1;338(Pt 2):433–440.

Cloning and functional characterization of the 5'-flanking region of the human bone morphogenetic protein-2 gene.

T Sugiura 1
PMCID: PMC1220070  PMID: 10024520

Abstract

Bone morphogenetic protein-2 (BMP-2) is involved in bone formation, organogenesis or pattern formation during development. The expression of BMP-2 is regulated accurately and coordinately with that of other transforming growth factor-beta (TGF-beta) superfamily members. To elucidate the mechanism underlying the regulation of BMP-2 expression, a 6.7 kb SpeI-SalI fragment, from the P1 phage library, encompassing the 5'-flanking region of the human BMP-2 gene, was isolated and sequenced. Transcription start sites were mapped by the 5'-rapid amplification of cDNA ends (RACE) method. It has been found that the human BMP-2 gene contains, largely, two promoter regions surrounded by GC-rich sequences with several Sp1 consensus motifs. The proximal promoter possesses a single start site, whereas several start sites are clustered in the distal promoter region. Neither TATA nor CAAT consensus sequences are found in the proximity of the start sites for either promoter. Interestingly, in no case is the transcription-initiation site common between the human and mouse BMP-2 genes, although the sequence of the BMP-2 gene is well conserved in the promoter region between two species. Transient transfection experiments with the reporter fused with various lengths of the BMP-2 promoter sequence demonstrated that there exist enhancer elements in an 1.1 kb GC-rich fragment covering both promoter regions. It is noteworthy that the enhancer elements are 5'-flanked by a 790 bp strong repressor element that is characterized by numerous AT stretches. This intriguing organization may be amenable to the tight control of the expression of BMP-2 that is essential for development or bone morphogenesis.

Full Text

The Full Text of this article is available as a PDF (227.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson H. C., Hsu H. H., Raval P., Hunt T. R., Schwappach J. R., Morris D. C., Schneider D. J. The mechanism of bone induction and bone healing by human osteosarcoma cell extracts. Clin Orthop Relat Res. 1995 Apr;(313):129–134. [PubMed] [Google Scholar]
  2. Brand A. H., Breeden L., Abraham J., Sternglanz R., Nasmyth K. Characterization of a "silencer" in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell. 1985 May;41(1):41–48. doi: 10.1016/0092-8674(85)90059-5. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Dudley A. T., Robertson E. J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn. 1997 Mar;208(3):349–362. doi: 10.1002/(SICI)1097-0177(199703)208:3<349::AID-AJA6>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  5. Fashena S. J., Reeves R., Ruddle N. H. A poly(dA-dT) upstream activating sequence binds high-mobility group I protein and contributes to lymphotoxin (tumor necrosis factor-beta) gene regulation. Mol Cell Biol. 1992 Feb;12(2):894–903. doi: 10.1128/mcb.12.2.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feng J. Q., Harris M. A., Ghosh-Choudhury N., Feng M., Mundy G. R., Harris S. E. Structure and sequence of mouse bone morphogenetic protein-2 gene (BMP-2): comparison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim Biophys Acta. 1994 Jun 21;1218(2):221–224. doi: 10.1016/0167-4781(94)90017-5. [DOI] [PubMed] [Google Scholar]
  7. Hogan B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996 Jul 1;10(13):1580–1594. doi: 10.1101/gad.10.13.1580. [DOI] [PubMed] [Google Scholar]
  8. Hötten G., Neidhardt H., Jacobowsky B., Pohl J. Cloning and expression of recombinant human growth/differentiation factor 5. Biochem Biophys Res Commun. 1994 Oct 28;204(2):646–652. doi: 10.1006/bbrc.1994.2508. [DOI] [PubMed] [Google Scholar]
  9. Kim J., Reeves R., Rothman P., Boothby M. The non-histone chromosomal protein HMG-I(Y) contributes to repression of the immunoglobulin heavy chain germ-line epsilon RNA promoter. Eur J Immunol. 1995 Mar;25(3):798–808. doi: 10.1002/eji.1830250326. [DOI] [PubMed] [Google Scholar]
  10. Kingsley D. M., Bland A. E., Grubber J. M., Marker P. C., Russell L. B., Copeland N. G., Jenkins N. A. The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell. 1992 Oct 30;71(3):399–410. doi: 10.1016/0092-8674(92)90510-j. [DOI] [PubMed] [Google Scholar]
  11. Klein-Hessling S., Schneider G., Heinfling A., Chuvpilo S., Serfling E. HMG I(Y) interferes with the DNA binding of NF-AT factors and the induction of the interleukin 4 promoter in T cells. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15311–15316. doi: 10.1073/pnas.93.26.15311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kollmar R., Sukow K. A., Sponagle S. K., Farnham P. J. Start site selection at the TATA-less carbamoyl-phosphate synthase (glutamine-hydrolyzing)/aspartate carbamoyltransferase/dihydroorotase promoter. J Biol Chem. 1994 Jan 21;269(3):2252–2257. [PubMed] [Google Scholar]
  13. Koop B. F., Hood L. Striking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA. Nat Genet. 1994 May;7(1):48–53. doi: 10.1038/ng0594-48. [DOI] [PubMed] [Google Scholar]
  14. Laufer E., Nelson C. E., Johnson R. L., Morgan B. A., Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell. 1994 Dec 16;79(6):993–1003. doi: 10.1016/0092-8674(94)90030-2. [DOI] [PubMed] [Google Scholar]
  15. Lu J., Lee W., Jiang C., Keller E. B. Start site selection by Sp1 in the TATA-less human Ha-ras promoter. J Biol Chem. 1994 Feb 18;269(7):5391–5402. [PubMed] [Google Scholar]
  16. Luo G., Hofmann C., Bronckers A. L., Sohocki M., Bradley A., Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 1995 Nov 15;9(22):2808–2820. doi: 10.1101/gad.9.22.2808. [DOI] [PubMed] [Google Scholar]
  17. Lyons K. M., Hogan B. L., Robertson E. J. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev. 1995 Mar;50(1):71–83. doi: 10.1016/0925-4773(94)00326-i. [DOI] [PubMed] [Google Scholar]
  18. Lyons K. M., Pelton R. W., Hogan B. L. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 1989 Nov;3(11):1657–1668. doi: 10.1101/gad.3.11.1657. [DOI] [PubMed] [Google Scholar]
  19. Maher J. F., Nathans D. Multivalent DNA-binding properties of the HMG-1 proteins. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6716–6720. doi: 10.1073/pnas.93.13.6716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murray E., Provvedini D., Curran D., Catherwood B., Sussman H., Manolagas S. Characterization of a human osteoblastic osteosarcoma cell line (SAOS-2) with high bone alkaline phosphatase activity. J Bone Miner Res. 1987 Jun;2(3):231–238. doi: 10.1002/jbmr.5650020310. [DOI] [PubMed] [Google Scholar]
  21. Naylor L. H., Clark E. M. d(TG)n.d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. Nucleic Acids Res. 1990 Mar 25;18(6):1595–1601. doi: 10.1093/nar/18.6.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pan J., Xia L., McEver R. P. Comparison of promoters for the murine and human P-selectin genes suggests species-specific and conserved mechanisms for transcriptional regulation in endothelial cells. J Biol Chem. 1998 Apr 17;273(16):10058–10067. doi: 10.1074/jbc.273.16.10058. [DOI] [PubMed] [Google Scholar]
  23. Riancho J. A., Zarrabeitia M. T., Olmos J. M., Amado J. A., Gonzalez-Macias J. Effects of interleukin-4 on human osteoblast-like cells. Bone Miner. 1993 Apr;21(1):53–61. doi: 10.1016/s0169-6009(08)80120-1. [DOI] [PubMed] [Google Scholar]
  24. Rodan S. B., Imai Y., Thiede M. A., Wesolowski G., Thompson D., Bar-Shavit Z., Shull S., Mann K., Rodan G. A. Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res. 1987 Sep 15;47(18):4961–4966. [PubMed] [Google Scholar]
  25. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Solomon M. J., Strauss F., Varshavsky A. A mammalian high mobility group protein recognizes any stretch of six A.T base pairs in duplex DNA. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276–1280. doi: 10.1073/pnas.83.5.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sternberg N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci U S A. 1990 Jan;87(1):103–107. doi: 10.1073/pnas.87.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Storm E. E., Huynh T. V., Copeland N. G., Jenkins N. A., Kingsley D. M., Lee S. J. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature. 1994 Apr 14;368(6472):639–643. doi: 10.1038/368639a0. [DOI] [PubMed] [Google Scholar]
  29. Thomas J. T., Lin K., Nandedkar M., Camargo M., Cervenka J., Luyten F. P. A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet. 1996 Mar;12(3):315–317. doi: 10.1038/ng0396-315. [DOI] [PubMed] [Google Scholar]
  30. Urist M. R. Bone: formation by autoinduction. Science. 1965 Nov 12;150(3698):893–899. doi: 10.1126/science.150.3698.893. [DOI] [PubMed] [Google Scholar]
  31. Von Ohlen T., Lessing D., Nusse R., Hooper J. E. Hedgehog signaling regulates transcription through cubitus interruptus, a sequence-specific DNA binding protein. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2404–2409. doi: 10.1073/pnas.94.6.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang E. A., Rosen V., D'Alessandro J. S., Bauduy M., Cordes P., Harada T., Israel D. I., Hewick R. M., Kerns K. M., LaPan P. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2220–2224. doi: 10.1073/pnas.87.6.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wingender E., Dietze P., Karas H., Knüppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996 Jan 1;24(1):238–241. doi: 10.1093/nar/24.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wozney J. M., Rosen V., Byrne M., Celeste A. J., Moutsatsos I., Wang E. A. Growth factors influencing bone development. J Cell Sci Suppl. 1990;13:149–156. doi: 10.1242/jcs.1990.supplement_13.14. [DOI] [PubMed] [Google Scholar]
  35. Wozney J. M., Rosen V., Celeste A. J., Mitsock L. M., Whitters M. J., Kriz R. W., Hewick R. M., Wang E. A. Novel regulators of bone formation: molecular clones and activities. Science. 1988 Dec 16;242(4885):1528–1534. doi: 10.1126/science.3201241. [DOI] [PubMed] [Google Scholar]
  36. Yie J., Liang S., Merika M., Thanos D. Intra- and intermolecular cooperative binding of high-mobility-group protein I(Y) to the beta-interferon promoter. Mol Cell Biol. 1997 Jul;17(7):3649–3662. doi: 10.1128/mcb.17.7.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang H., Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development. 1996 Oct;122(10):2977–2986. doi: 10.1242/dev.122.10.2977. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES