Abstract
A novel and potent azetidinone inhibitor of the lipoprotein-associated phospholipase A2 (Lp-PLA2), i.e. platelet-activating factor acetylhydrolase, is described for the first time. This inhibitor, SB-222657 (Ki=40+/-3 nM, kobs/[I]=6. 6x10(5) M-1.s-1), is inactive against paraoxonase, is a poor inhibitor of lecithin:cholesterol acyltransferase and has been used to investigate the role of Lp-PLA2 in the oxidative modification of lipoproteins. Although pretreatment with SB-222657 did not affect the kinetics of low-density lipoprotein (LDL) oxidation by Cu2+ or an azo free-radical generator as determined by assay of lipid hydroperoxides (LOOHs), conjugated dienes and thiobarbituric acid-reacting substances, in both cases it inhibited the elevation in lysophosphatidylcholine content. Moreover, the significantly increased monocyte chemoattractant activity found in a non-esterified fatty acid fraction from LDL oxidized by Cu2+ was also prevented by pretreatment with SB-222657, with an IC50 value of 5.0+/-0.4 nM. The less potent diastereoisomer of SB-222657, SB-223777 (Ki=6.3+/-0.5 microM, kobs/[I]=1.6x10(4) M-1.s-1), was found to be significantly less active in both assays. Thus, in addition to generating lysophosphatidylcholine, a known biologically active lipid, these results demonstrate that Lp-PLA2 is capable of generating oxidized non-esterified fatty acid moieties that are also bioactive. These findings are consistent with our proposal that Lp-PLA2 has a predominantly pro-inflammatory role in atherogenesis. Finally, similar studies have demonstrated that a different situation exists during the oxidation of high-density lipoprotein, with enzyme(s) other than Lp-PLA2 apparently being responsible for generating lysophosphatidylcholine.
Full Text
The Full Text of this article is available as a PDF (177.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Berliner J. A., Heinecke J. W. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 1996;20(5):707–727. doi: 10.1016/0891-5849(95)02173-6. [DOI] [PubMed] [Google Scholar]
- Berliner J., Leitinger N., Watson A., Huber J., Fogelman A., Navab M. Oxidized lipids in atherogenesis: formation, destruction and action. Thromb Haemost. 1997 Jul;78(1):195–199. [PubMed] [Google Scholar]
- Bowry V. W., Stanley K. K., Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10316–10320. doi: 10.1073/pnas.89.21.10316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai Y. C., Howe P. H., DiCorleto P. E., Chisolm G. M. Oxidized low density lipoprotein and lysophosphatidylcholine stimulate cell cycle entry in vascular smooth muscle cells. Evidence for release of fibroblast growth factor-2. J Biol Chem. 1996 Jul 26;271(30):17791–17797. doi: 10.1074/jbc.271.30.17791. [DOI] [PubMed] [Google Scholar]
- Christison J., Karjalainen A., Brauman J., Bygrave F., Stocker R. Rapid reduction and removal of HDL- but not LDL-associated cholesteryl ester hydroperoxides by rat liver perfused in situ. Biochem J. 1996 Mar 15;314(Pt 3):739–742. doi: 10.1042/bj3140739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowan C. L., Steffen R. P. Lysophosphatidylcholine inhibits relaxation of rabbit abdominal aorta mediated by endothelium-derived nitric oxide and endothelium-derived hyperpolarizing factor independent of protein kinase C activation. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2290–2297. doi: 10.1161/01.atv.15.12.2290. [DOI] [PubMed] [Google Scholar]
- Croft K. D., Williams P., Dimmitt S., Abu-Amsha R., Beilin L. J. Oxidation of low-density lipoproteins: effect of antioxidant content, fatty acid composition and intrinsic phospholipase activity on susceptibility to metal ion-induced oxidation. Biochim Biophys Acta. 1995 Feb 9;1254(3):250–256. doi: 10.1016/0005-2760(94)00166-v. [DOI] [PubMed] [Google Scholar]
- Davies M. J., Woolf N. Atherosclerosis: what is it and why does it occur? Br Heart J. 1993 Jan;69(1 Suppl):S3–11. doi: 10.1136/hrt.69.1_suppl.s3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
- Dennis E. A. The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci. 1997 Jan;22(1):1–2. doi: 10.1016/s0968-0004(96)20031-3. [DOI] [PubMed] [Google Scholar]
- Dupuis F., Denizot Y., Fixe P., Dulery C., Praloran V. PAF and haematopoiesis. X. Macrophage colony-stimulating factor and granulocyte macrophage colony-stimulating factor enhance platelet-activating factor acetylhydrolase production by human blood-derived macrophages. Biochim Biophys Acta. 1996 Mar 27;1311(1):27–32. doi: 10.1016/0167-4889(95)00193-x. [DOI] [PubMed] [Google Scholar]
- Ferguson J. J. American College of Cardiology 45th Annual Scientific Session, Orlando, Florida, March 24 to 27, 1996. Circulation. 1996 Jul 1;94(1):1–5. doi: 10.1161/01.cir.94.1.1. [DOI] [PubMed] [Google Scholar]
- Flavahan N. A. Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation. 1992 May;85(5):1927–1938. doi: 10.1161/01.cir.85.5.1927. [DOI] [PubMed] [Google Scholar]
- Karabina S. A., Liapikos T. A., Grekas G., Goudevenos J., Tselepis A. D. Distribution of PAF-acetylhydrolase activity in human plasma low-density lipoprotein subfractions. Biochim Biophys Acta. 1994 Jun 23;1213(1):34–38. doi: 10.1016/0005-2760(94)90219-4. [DOI] [PubMed] [Google Scholar]
- Khan B. V., Parthasarathy S. S., Alexander R. W., Medford R. M. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest. 1995 Mar;95(3):1262–1270. doi: 10.1172/JCI117776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kugiyama K., Kerns S. A., Morrisett J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990 Mar 8;344(6262):160–162. doi: 10.1038/344160a0. [DOI] [PubMed] [Google Scholar]
- Kuhn H., Belkner J., Wiesner R., Brash A. R. Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. J Biol Chem. 1990 Oct 25;265(30):18351–18361. [PubMed] [Google Scholar]
- Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lafont A. M., Chai Y. C., Cornhill J. F., Whitlow P. L., Howe P. H., Chisolm G. M. Effect of alpha-tocopherol on restenosis after angioplasty in a model of experimental atherosclerosis. J Clin Invest. 1995 Mar;95(3):1018–1025. doi: 10.1172/JCI117746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackness M. I., Durrington P. N. HDL, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis. 1995 Jun;115(2):243–253. doi: 10.1016/0021-9150(94)05524-m. [DOI] [PubMed] [Google Scholar]
- Mackness M. I., Harty D., Bhatnagar D., Winocour P. H., Arrol S., Ishola M., Durrington P. N. Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis. 1991 Feb;86(2-3):193–199. doi: 10.1016/0021-9150(91)90215-o. [DOI] [PubMed] [Google Scholar]
- Mackness M. I., Mackness B., Durrington P. N., Connelly P. W., Hegele R. A. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol. 1996 Apr;7(2):69–76. doi: 10.1097/00041433-199604000-00004. [DOI] [PubMed] [Google Scholar]
- Marcel Y. L. Lecithin: cholesterol acyltransferase and intravascular cholesterol transport. Adv Lipid Res. 1982;19:85–136. doi: 10.1016/b978-0-12-024919-0.50009-6. [DOI] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
- Marshall L. A., Bauer J., Sung M. L., Chang J. Y. Evaluation of antirheumatic drugs for their effect in vitro on purified human synovial fluid phospholipase A2. J Rheumatol. 1991 Jan;18(1):59–65. [PubMed] [Google Scholar]
- Navab M., Berliner J. A., Watson A. D., Hama S. Y., Territo M. C., Lusis A. J., Shih D. M., Van Lenten B. J., Frank J. S., Demer L. L. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol. 1996 Jul;16(7):831–842. doi: 10.1161/01.atv.16.7.831. [DOI] [PubMed] [Google Scholar]
- Ohkawa H., Ohishi N., Yagi K. Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J Lipid Res. 1978 Nov;19(8):1053–1057. [PubMed] [Google Scholar]
- Patrono C., FitzGerald G. A. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2309–2315. doi: 10.1161/01.atv.17.11.2309. [DOI] [PubMed] [Google Scholar]
- Quinn M. T., Kondratenko N., Parthasarathy S. Analysis of the monocyte chemotactic response to lysophosphatidylcholine: role of lysophospholipase C. Biochim Biophys Acta. 1991 Apr 3;1082(3):293–302. doi: 10.1016/0005-2760(91)90205-v. [DOI] [PubMed] [Google Scholar]
- Quinn M. T., Parthasarathy S., Fong L. G., Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987 May;84(9):2995–2998. doi: 10.1073/pnas.84.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redgrave T. G., Roberts D. C., West C. E. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 1975 May 12;65(1-2):42–49. doi: 10.1016/0003-2697(75)90488-1. [DOI] [PubMed] [Google Scholar]
- Sakai M., Miyazaki A., Hakamata H., Sato Y., Matsumura T., Kobori S., Shichiri M., Horiuchi S. Lysophosphatidylcholine potentiates the mitogenic activity of modified LDL for human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol. 1996 Apr;16(4):600–605. doi: 10.1161/01.atv.16.4.600. [DOI] [PubMed] [Google Scholar]
- Sakurai T., Yamamoto Y., Baba N., Nakano M. Phospholipase A(2) activity in non-glycated and glycated low density lipoproteins. Biochim Biophys Acta. 1996 May 31;1301(1-2):85–89. doi: 10.1016/0005-2760(96)00022-7. [DOI] [PubMed] [Google Scholar]
- Sato K., Niki E., Shimasaki H. Free radical-mediated chain oxidation of low density lipoprotein and its synergistic inhibition by vitamin E and vitamin C. Arch Biochem Biophys. 1990 Jun;279(2):402–405. doi: 10.1016/0003-9861(90)90508-v. [DOI] [PubMed] [Google Scholar]
- Stafforini D. M., Elstad M. R., McIntyre T. M., Zimmerman G. A., Prescott S. M. Human macrophages secret platelet-activating factor acetylhydrolase. J Biol Chem. 1990 Jun 15;265(17):9682–9687. [PubMed] [Google Scholar]
- Stafforini D. M., McIntyre T. M., Carter M. E., Prescott S. M. Human plasma platelet-activating factor acetylhydrolase. Association with lipoprotein particles and role in the degradation of platelet-activating factor. J Biol Chem. 1987 Mar 25;262(9):4215–4222. [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbrecher U. P., Pritchard P. H. Hydrolysis of phosphatidylcholine during LDL oxidation is mediated by platelet-activating factor acetylhydrolase. J Lipid Res. 1989 Mar;30(3):305–315. [PubMed] [Google Scholar]
- Stremler K. E., Stafforini D. M., Prescott S. M., McIntyre T. M. Human plasma platelet-activating factor acetylhydrolase. Oxidatively fragmented phospholipids as substrates. J Biol Chem. 1991 Jun 15;266(17):11095–11103. [PubMed] [Google Scholar]
- Subbaiah P. V., Liu M. Disparate effects of oxidation on plasma acyltransferase activities: inhibition of cholesterol esterification but stimulation of transesterification of oxidized phospholipids. Biochim Biophys Acta. 1996 May 31;1301(1-2):115–126. doi: 10.1016/0005-2760(96)00028-8. [DOI] [PubMed] [Google Scholar]
- Tew D. G., Boyd H. F., Ashman S., Theobald C., Leach C. A. Mechanism of inhibition of LDL phospholipase A2 by monocyclic-beta-lactams. Burst kinetics and the effect of stereochemistry. Biochemistry. 1998 Jul 14;37(28):10087–10093. doi: 10.1021/bi9801412. [DOI] [PubMed] [Google Scholar]
- Tew D. G., Southan C., Rice S. Q., Lawrence M. P., Li H., Boyd H. F., Moores K., Gloger I. S., Macphee C. H. Purification, properties, sequencing, and cloning of a lipoprotein-associated, serine-dependent phospholipase involved in the oxidative modification of low-density lipoproteins. Arterioscler Thromb Vasc Biol. 1996 Apr;16(4):591–599. doi: 10.1161/01.atv.16.4.591. [DOI] [PubMed] [Google Scholar]
- Thorne S. A., Abbot S. E., Winyard P. G., Blake D. R., Mills P. G. Extent of oxidative modification of low density lipoprotein determines the degree of cytotoxicity to human coronary artery cells. Heart. 1996 Jan;75(1):11–16. doi: 10.1136/hrt.75.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tjoelker L. W., Eberhardt C., Unger J., Trong H. L., Zimmerman G. A., McIntyre T. M., Stafforini D. M., Prescott S. M., Gray P. W. Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad. J Biol Chem. 1995 Oct 27;270(43):25481–25487. doi: 10.1074/jbc.270.43.25481. [DOI] [PubMed] [Google Scholar]
- Tjoelker L. W., Wilder C., Eberhardt C., Stafforini D. M., Dietsch G., Schimpf B., Hooper S., Le Trong H., Cousens L. S., Zimmerman G. A. Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature. 1995 Apr 6;374(6522):549–553. doi: 10.1038/374549a0. [DOI] [PubMed] [Google Scholar]
- Watson A. D., Berliner J. A., Hama S. Y., La Du B. N., Faull K. F., Fogelman A. M., Navab M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest. 1995 Dec;96(6):2882–2891. doi: 10.1172/JCI118359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkins G. M., Leake D. S. The effect of inhibitors of free radical generating-enzymes on low-density lipoprotein oxidation by macrophages. Biochim Biophys Acta. 1994 Feb 10;1211(1):69–78. doi: 10.1016/0005-2760(94)90140-6. [DOI] [PubMed] [Google Scholar]
- Wu R., Huang Y. H., Elinder L. S., Frostegård J. Lysophosphatidylcholine is involved in the antigenicity of oxidized LDL. Arterioscler Thromb Vasc Biol. 1998 Apr;18(4):626–630. doi: 10.1161/01.atv.18.4.626. [DOI] [PubMed] [Google Scholar]
- Yui S., Sasaki T., Miyazaki A., Horiuchi S., Yamazaki M. Induction of murine macrophage growth by modified LDLs. Arterioscler Thromb. 1993 Mar;13(3):331–337. doi: 10.1161/01.atv.13.3.331. [DOI] [PubMed] [Google Scholar]
- de Graaf J., Hak-Lemmers H. L., Hectors M. P., Demacker P. N., Hendriks J. C., Stalenhoef A. F. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb. 1991 Mar-Apr;11(2):298–306. doi: 10.1161/01.atv.11.2.298. [DOI] [PubMed] [Google Scholar]
- el-Saadani M., Esterbauer H., el-Sayed M., Goher M., Nassar A. Y., Jürgens G. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res. 1989 Apr;30(4):627–630. [PubMed] [Google Scholar]
