Skip to main content
Journal of Cancer Research and Clinical Oncology logoLink to Journal of Cancer Research and Clinical Oncology
. 1996 Jun;122(6):319–327. doi: 10.1007/BF01220798

Lessons from thep53 mutant mouse

Tyler Jacks 1
PMCID: PMC12200764  PMID: 8642041

Abstract

The use of the mouse as a model organism in cancer research has a long and productive history, from the earliest studies of chemical carcinogenesis to the recent advances in gene targeting. Many of the basic principles of tumorigenesis have been formed in whole or in part through the study of tumor development in the mouse. Over the past decade, the major experimental approach has been to generate cancer-prone strains, either through transgenic technologies or, more recently, gene targeting. Here, I will review the state of the field of gene targeting of tumor-suppressor genes and concentrate on thep53 mutant strains and the lessons learned from thep53 mutant mouse.

Key words: Gene targeting, Mouse knockouts, Tumor-suppressor genes, Cancer genetics, Apoptosis, p53

References

  1. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5:937–943 [DOI] [PubMed] [Google Scholar]
  2. Bardeesy N, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, Aguiar MC, Grundy P, Shows T, Pelletier J (1994) Anaplastic Wilms' tumour, a subtype displaying poor prognosis, harbors p53 gene mutations. Nat Genet 7:91–97 [DOI] [PubMed] [Google Scholar]
  3. Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019–1029 [DOI] [PubMed] [Google Scholar]
  4. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon G (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–557 [DOI] [PubMed] [Google Scholar]
  5. Caelles C, Helmberg A, Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223 [DOI] [PubMed] [Google Scholar]
  6. Cho KR, Fearon ER (1995) DCC:linking tumor suppressor genes and altered cell surface interactions in cancer? Curr Opin Genet Dev 5:72–78 [DOI] [PubMed] [Google Scholar]
  7. Clarke AR, Maandag ER, Roon M van, Lugt NMT van der, Valk M van der, Hooper ML, Berns A, Riele H te (1992) Requirement for a functionalRb-1 gene in murine development. Nature 359:328–330 [DOI] [PubMed] [Google Scholar]
  8. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852 [DOI] [PubMed] [Google Scholar]
  9. Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 7:546–554 [DOI] [PubMed] [Google Scholar]
  10. Deng C, Zhang P, Harper JW, Elledge S, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684 [DOI] [PubMed] [Google Scholar]
  11. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221 [DOI] [PubMed] [Google Scholar]
  12. Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi Y-P, Pinkel D, Gray J, Bradley A, Medina D, Varmus HE (1995) Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev 9:882–895 [DOI] [PubMed] [Google Scholar]
  13. Duan DR, Pause A, Burgess WH, Aso T, Chen DYT, Garrett KP, Conaway RC, Conaway JW, Linehan WM, Klausner RD (1995) Inhibition of transcriptional elongation by the VHL tumor suppressor protein. Science 269:1402–1406 [DOI] [PubMed] [Google Scholar]
  14. Dutta A, Ruppert JM, Aster JC, Winchester e (1993) Inhibition of DNA replication factor RPA by p53. Nature 365:79–82 [DOI] [PubMed] [Google Scholar]
  15. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler K, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825 [DOI] [PubMed] [Google Scholar]
  16. Fodde R, Edelman W, Yang K, Leeuwen C van, Carlson C, Renault B, Breukel C, Alt E, Lipkin M, Khan PM, Kucherlapati R (1994) A targeted chain-termination in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 91: 8969–8973 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ginsberg D, Mechta F, Yaniv M, Oren M (1991) Wild-type p53 can down-modulate the activity of various promoters. Proc Natl Acad Sci USA 88:9979–9983 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878 [PubMed] [Google Scholar]
  19. Harrison DJ, Hooper ML, Armstrong JF, Clarke AR (1995) Effects of heterozygosity for the Rb-1t19neo allele in the mouse. Oncogene 10:1615–1620 [PubMed] [Google Scholar]
  20. Harvey M, McArthur MJ, Montgomery CA, Butel JS, Bradley A, Donehower LA (1993) Spontaneous and carcinogen-induced tumors in p53-deficient mice. Nat Genet 5:225–229 [DOI] [PubMed] [Google Scholar]
  21. Hastie ND (1994) The genetics of Wilms' tumor—a case of disrupted development. Annu Rev Genet 28:523–558 [DOI] [PubMed] [Google Scholar]
  22. Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M (1995) Induction of apoptosis in HeLa cells bytrans-activation-deficient p53. Genes Dev 9:2170–2183 [DOI] [PubMed] [Google Scholar]
  23. Hermeking H, Eick D (1994) Mediation of c-myc-induced apoptosis by p53. Science 265:2091–2093 [DOI] [PubMed] [Google Scholar]
  24. Howes KA, Ransom N, Papermaster DS, Lasudry JGH, Albert DM, Windle JJ (1994). Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev 8:1300–1310 [DOI] [PubMed] [Google Scholar]
  25. Hu N, Gutsmann A, Herbert DC, Bradley A, Lee WH, Lee EY-HP (1994) Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9:1021–1027 [PubMed] [Google Scholar]
  26. Jacks T, Fazeli A, Schmitt E, Bronson R, Goodell M, Weinberg R (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300 [DOI] [PubMed] [Google Scholar]
  27. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994a) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7 [DOI] [PubMed] [Google Scholar]
  28. Jacks T, Shih TS, Schmitt EM, Bronson RD, Bernards A, Weinberg RA (1994b) Tumourigenic and developmental consequences of a targeted Nf1 mutation in the mouse. Nat Genet 7:353–361 [DOI] [PubMed] [Google Scholar]
  29. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS3, Johnson BE, Skolnick MH (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440 [DOI] [PubMed] [Google Scholar]
  30. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311 [PubMed] [Google Scholar]
  31. Kastan M, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597 [DOI] [PubMed] [Google Scholar]
  32. Kemp CJ, Wheldon T, Balmain A (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8:66–69. [DOI] [PubMed] [Google Scholar]
  33. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B (1991) Identification of p53 as a sequence-specific DNA binding protein. Science 252:1708–1711 [DOI] [PubMed] [Google Scholar]
  34. Kibel A, Iliopaoulos O, DeCaprio JA, Kaelin WG (1995) Binding of the von-Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269:1444–1446 [DOI] [PubMed] [Google Scholar]
  35. Kley N, Chung RY, Fay S, Loeffler JP, Seizinger BR (1992) Repression of the basal c-fos promoter by wild-type p53. Nucleic Acids Res 20:4083–4087 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Knudson JAG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691 [DOI] [PubMed] [Google Scholar]
  38. Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429 [DOI] [PubMed] [Google Scholar]
  39. Lane DP (1992) p53, guardian of the genome. Nature 358:15–16 [DOI] [PubMed] [Google Scholar]
  40. Lee EY-HP, Chang C-Y, Hu N, Wang Y-CJ, Lai C-C, Herrup K, Lee W-H (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359: 288–295. [DOI] [PubMed] [Google Scholar]
  41. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935 [DOI] [PubMed] [Google Scholar]
  42. Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus-5 E1A and accompanies apoptosis. Genes Dev 7:535–545 [DOI] [PubMed] [Google Scholar]
  43. Lowe SM, Ruley HE, Jacks T, Housman DE (1993a) p53-dependent apoptosis modulates the cytoxicity of anticancer agents. Cell 74:957–967 [DOI] [PubMed] [Google Scholar]
  44. Lowe SW, Schmitt ES, Smith SW, Osborne BA, Jacks T (1993b) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849. [DOI] [PubMed] [Google Scholar]
  45. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T,(1994a) p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810 [DOI] [PubMed] [Google Scholar]
  46. Lowe SW, Jacks T, Housman DE, Ruley HE (1994b) Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Nat Acad Sci USA 91:2026–2030 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mack DH, Vartikar J, Pipas JM, Laimins LA (1993) Specific repression of TATA-mediated but not intiator-mediated transcription by wild-type p53. Nature 363:281–283 [DOI] [PubMed] [Google Scholar]
  48. Malkin D (1993) p53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet 66:83–92 [DOI] [PubMed] [Google Scholar]
  49. McCormick F (1995) Ras signaling and NF1. Curr Opin Genet Dev 5:51–55 [DOI] [PubMed] [Google Scholar]
  50. Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane D, Hall PA (1994) The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 54:614–617 [PubMed] [Google Scholar]
  51. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71 [DOI] [PubMed] [Google Scholar]
  52. Miyaki M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Konishi M (1995) Familial polyposis: recent advances. Crit Rev Oncol Hematol 19:1–31 [DOI] [PubMed] [Google Scholar]
  53. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299 [DOI] [PubMed] [Google Scholar]
  54. Moran E (1993) DNA tumor virus transforming proteins and the cell cycle. Curr Opin Genet Dev 3:63–70 [DOI] [PubMed] [Google Scholar]
  55. Morgenbesser SD, Williams BO, Jacks T, DePinho RA (1994) p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371:72–74 [DOI] [PubMed] [Google Scholar]
  56. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324 [DOI] [PubMed] [Google Scholar]
  57. Okamoto K, Beach D (1994) Cyclin G is a transcriptional target of the tumor suppressor protein p53. EMBO J 13:4816–4823 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris S, Kinnzler KW, Vogelstein B (1993) Oncoprotein mdm2 conceals the activation domain of tumor suppressor p53. Nature 362:857–860 [DOI] [PubMed] [Google Scholar]
  59. Pan H, Griep A (1994) Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev 8:1285–1299 [DOI] [PubMed] [Google Scholar]
  60. Pan H, Griep AE (1995) Temporally distinct patterns of p53-dependent andp53-independent apoptosis during mouse lens development. Genes Dev 9:2157–2169 [DOI] [PubMed] [Google Scholar]
  61. Polakis P (1995) Mutations in the APC gene and their implications for protein structure and function. Curr Opin Genet Dev 5:66–71 [DOI] [PubMed] [Google Scholar]
  62. Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SEM, Salter DM, Bird CC, Wyllie AH, Hooper ML, Clarke AR (1994) Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9:603–609 [PubMed] [Google Scholar]
  63. Sabbatini P, Lin J, Levine AJ, White E (1995) Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev 9:2184–2192 [DOI] [PubMed] [Google Scholar]
  64. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10:175–180 [DOI] [PubMed] [Google Scholar]
  65. Santhanam U, Ray A, Sehgal PB (1991) Reppression of the interleukine 6 promoter by p53 and the retinoblastoma susceptibility gene product. Proc Natl Acad Sci USA 88: 7605–7609 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Savitsky K, et al. (1995) A single ataxia telangiectasia gene with a product similar to P1-3 kinase. Science 268:1749–1753 [DOI] [PubMed] [Google Scholar]
  67. Strasser A, Harris AW, Jacks T, Cory S (1994) DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79:329–339 [DOI] [PubMed] [Google Scholar]
  68. Su L-K, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dover WF (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670 [DOI] [PubMed] [Google Scholar]
  69. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703–711 [DOI] [PubMed] [Google Scholar]
  70. Tanaka N, Ishihara M, Kitagawa M, Harada H, Kimura T, Matsuyama T, Lamphier MS, Aizawa S, Mak TW, Taniguchi T (1994) Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77:829–839 [DOI] [PubMed] [Google Scholar]
  71. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, Eldridge R, Kley N, Menon AG, Pulaski K, Haase VH, Ambrose CM, Munroe D, Bove C, Maines JL, Martuza RL, MacDonald ME, Deizinger BR, Short MP, Buckler AJ, Gusella JF (1993) A novel moresin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800 [DOI] [PubMed] [Google Scholar]
  72. Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S, Matsuo I, Ikawa Y, Aizawa S (1994) Enhanced cell proliferative potential in culture of cells from p53-deficient mice. Oncogene 9:603–609 [PubMed] [Google Scholar]
  73. Viskochil D, White R, Cawthon R (1993) The neurofibromatous type I gene. Annu Rev Neurosci 16:183–205 [DOI] [PubMed] [Google Scholar]
  74. Wagner AJ, Kokontis JM, Hay N (1994)myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21 waf1/cip1. Genes Dev 8:2817–2830 [DOI] [PubMed] [Google Scholar]
  75. Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC (1994) Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity and association with ERCC3. Proc Natl Acad Sci USA 91:2230–2234 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330 [DOI] [PubMed] [Google Scholar]
  77. Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T (1994) Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 7:480–484 [DOI] [PubMed] [Google Scholar]
  78. Yin Y, Tainksy MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cells cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937–948 [DOI] [PubMed] [Google Scholar]
  79. Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Limmelman J, Remington L, Jacks T, Brash DE (1994) Sunburn and p53 in the onset of skin cancer. Nature 372:773–776 [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cancer Research and Clinical Oncology are provided here courtesy of Springer

RESOURCES