Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 1;338(Pt 2):529–538.

Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding.

H Leibiger 1, D Wüstner 1, R D Stigler 1, U Marx 1
PMCID: PMC1220082  PMID: 10024532

Abstract

The variable-domain-attached oligosaccharide side chains of a human IgG produced by a human-human-mouse heterohybridoma were analysed. In addition to the conserved N-glycosylation site at Asn-297, an N-glycosylation consensus sequence (Asn-Asn-Ser) is located at position 75 in the variable region of its heavy chain. The antibody was cleaved into its antigen-binding (Fab) and crystallizing fragments. The oligosaccharides of the Fab fragment were released by digestion with various endo- and exoglycosidases and analysed by anion-exchange chromatography and fluorophore-assisted carbohydrate electrophoresis. The predominant components were disialyl- bi-antennary and tetra-sialyl tetra-antennary complex carbohydrates. Of note is the presence in this human IgG of oligosaccharides containing N-glycolylneuraminic acid and N-acetylneuraminic acid in the ratio of 94:6. Furthermore, we determined N-acetylgalactosamine in the Fab fragment of this antibody, suggesting the presence of O-linked carbohydrates. A three-dimensional structure of the glycosylated variable (Fv) fragment was suggested using computer-assisted modelling. In addition, the influence of the Fv-associated oligosaccharides of the CBGA1 antibody on antigen binding was tested in several ELISA systems. Deglycosylation resulted in a decreased antigen-binding activity.

Full Text

The Full Text of this article is available as a PDF (292.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adib-Conquy M., Avrameas S., Ternynck T. Monoclonal IgG and IgM autoantibodies obtained after polyclonal activation, show reactivities similar to those of polyclonal natural autoantibodies. Mol Immunol. 1993 Feb;30(2):119–127. doi: 10.1016/0161-5890(93)90083-n. [DOI] [PubMed] [Google Scholar]
  2. Avrameas S., Ternynck T. The natural autoantibodies system: between hypotheses and facts. Mol Immunol. 1993 Aug;30(12):1133–1142. doi: 10.1016/0161-5890(93)90160-d. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Casali P., Notkins A. L. Probing the human B-cell repertoire with EBV: polyreactive antibodies and CD5+ B lymphocytes. Annu Rev Immunol. 1989;7:513–535. doi: 10.1146/annurev.iy.07.040189.002501. [DOI] [PubMed] [Google Scholar]
  5. Chandrasekaran E. V., Mendicino A., Garver F. A., Mendicino J. Structures of sialylated O-glycosidically and N-glycosidically linked oligosaccharides in a monoclonal immunoglobulin light chain. J Biol Chem. 1981 Feb 25;256(4):1549–1555. [PubMed] [Google Scholar]
  6. Coco-Martin J. M., Brunink F., van der Velden-de Groot T. A., Beuvery E. C. Analysis of glycoforms present in two mouse IgG2a monoclonal antibody preparations. J Immunol Methods. 1992 Nov 5;155(2):241–248. doi: 10.1016/0022-1759(92)90291-z. [DOI] [PubMed] [Google Scholar]
  7. Decourt C., Cogné M., Rocca A. Structural peculiarities of a truncated V kappa III immunoglobulin light chain in myeloma with light chain deposition disease. Clin Exp Immunol. 1996 Nov;106(2):357–361. doi: 10.1046/j.1365-2249.1996.d01-841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donadel G., Calabro A., Sigounas G., Hascall V. C., Notkins A. L., Harindranath N. Human polyreactive and monoreactive antibodies: effect of glycosylation on antigen binding. Glycobiology. 1994 Aug;4(4):491–496. doi: 10.1093/glycob/4.4.491. [DOI] [PubMed] [Google Scholar]
  9. Fykse E. M., Sletten K., Husby G., Cornwell G. G., 3rd The primary structure of the variable region of an immunoglobin IV light-chain amyloid-fibril protein (AL GIL). Biochem J. 1988 Dec 15;256(3):973–980. doi: 10.1042/bj2560973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. He X. M., Rüker F., Casale E., Carter D. C. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7154–7158. doi: 10.1073/pnas.89.15.7154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holm E., Sletten K., Husby G. Structural studies of a carbohydrate-containing immunoglobulin-lambda-light-chain amyloid-fibril protein (AL) of variable subgroup III. Biochem J. 1986 Nov 1;239(3):545–551. doi: 10.1042/bj2390545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kato M., Mochizuki K., Hashizume S., Tachibana H., Shirahata S., Murakami H. Activity enhancement of a lung cancer-associated human monoclonal antibody HB4C5 by N-deglycosylation. Hum Antibodies Hybridomas. 1993 Jan;4(1):9–14. [PubMed] [Google Scholar]
  13. Khurana S., Raghunathan V., Salunke D. M. The variable domain glycosylation in a monoclonal antibody specific to GnRH modulates antigen binding. Biochem Biophys Res Commun. 1997 May 19;234(2):465–469. doi: 10.1006/bbrc.1997.5929. [DOI] [PubMed] [Google Scholar]
  14. Kinoshita N., Ohno M., Nishiura T., Fujii S., Nishikawa A., Kawakami Y., Uozumi N., Taniguchi N. Glycosylation at the Fab portion of myeloma immunoglobulin G and increased fucosylated biantennary sugar chains: structural analysis by high-performance liquid chromatography and antibody-lectin enzyme immunoassay using Lens culinaris agglutinin. Cancer Res. 1991 Nov 1;51(21):5888–5892. [PubMed] [Google Scholar]
  15. Kratzin H. D., Palm W., Stangel M., Schmidt W. E., Friedrich J., Hilschmann N. Die Primärstruktur des kristallisierbaren monoklonalen Immunglobulins IgG1 Kol. II. Aminosäuresequenz der L-Kette, lambda-Typ, Subgruppe I. Biol Chem Hoppe Seyler. 1989 Mar;370(3):263–272. [PubMed] [Google Scholar]
  16. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  17. Leibiger H., Hansen A., Schoenherr G., Seifert M., Wüstner D., Stigler R., Marx U. Glycosylation analysis of a polyreactive human monoclonal IgG antibody derived from a human-mouse heterohybridoma. Mol Immunol. 1995 Jun;32(8):595–602. doi: 10.1016/0161-5890(95)00009-4. [DOI] [PubMed] [Google Scholar]
  18. Leibiger H., Kersten B., Albersheim P., Darvill A. Structural characterization of the oligosaccharides of a human monoclonal anti-lipopolysaccharide immunoglobulin M. Glycobiology. 1998 May;8(5):497–507. doi: 10.1093/glycob/8.5.497. [DOI] [PubMed] [Google Scholar]
  19. Leung S. O., Goldenberg D. M., Dion A. S., Pellegrini M. C., Shevitz J., Shih L. B., Hansen H. J. Construction and characterization of a humanized, internalizing, B-cell (CD22)-specific, leukemia/lymphoma antibody, LL2. Mol Immunol. 1995 Dec;32(17-18):1413–1427. doi: 10.1016/0161-5890(95)00080-1. [DOI] [PubMed] [Google Scholar]
  20. Lolis E., Alber T., Davenport R. C., Rose D., Hartman F. C., Petsko G. A. Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry. 1990 Jul 17;29(28):6609–6618. doi: 10.1021/bi00480a009. [DOI] [PubMed] [Google Scholar]
  21. Marks J. D., Tristem M., Karpas A., Winter G. Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur J Immunol. 1991 Apr;21(4):985–991. doi: 10.1002/eji.1830210419. [DOI] [PubMed] [Google Scholar]
  22. Middaugh C. R., Litman G. W. Atypical glycosylation of an IgG monoclonal cryoimmunoglobulin. J Biol Chem. 1987 Mar 15;262(8):3671–3673. [PubMed] [Google Scholar]
  23. Monica T. J., Williams S. B., Goochee C. F., Maiorella B. L. Characterization of the glycosylation of a human IgM produced by a human-mouse hybridoma. Glycobiology. 1995 Mar;5(2):175–185. doi: 10.1093/glycob/5.2.175. [DOI] [PubMed] [Google Scholar]
  24. Muchmore E. A., Milewski M., Varki A., Diaz S. Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem. 1989 Dec 5;264(34):20216–20223. [PubMed] [Google Scholar]
  25. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  26. Noguchi A., Mukuria C. J., Suzuki E., Naiki M. Immunogenicity of N-glycolylneuraminic acid-containing carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. J Biochem. 1995 Jan;117(1):59–62. doi: 10.1093/oxfordjournals.jbchem.a124721. [DOI] [PubMed] [Google Scholar]
  27. Rademacher T. W., Homans S. W., Parekh R. B., Dwek R. A. Immunoglobulin G as a glycoprotein. Biochem Soc Symp. 1986;51:131–148. [PubMed] [Google Scholar]
  28. Rosenstein R. W., Musson R. A., Armstrong M. K., Konigsberg W. H., Richards F. F. Contact regions for dinitrophenyl and menadione haptens in an immunoglobulin binding more than one antigen. Proc Natl Acad Sci U S A. 1972 Apr;69(4):877–881. doi: 10.1073/pnas.69.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rutherford T. J., Homans S. W. Restrained vs free dynamics simulations of oligosaccharides: application to solution dynamics of biantennary and bisected biantennary N-linked glycans. Biochemistry. 1994 Aug 16;33(32):9606–9614. doi: 10.1021/bi00198a029. [DOI] [PubMed] [Google Scholar]
  30. Rutherford T. J., Neville D. C., Homans S. W. Influence of the extent of branching on solution conformations of complex oligosaccharides: a molecular dynamics and NMR study of a penta-antennary "bisected" N-glycan. Biochemistry. 1995 Oct 31;34(43):14131–14137. doi: 10.1021/bi00043a018. [DOI] [PubMed] [Google Scholar]
  31. Rutherford T. J., Partridge J., Weller C. T., Homans S. W. Characterization of the extent of internal motions in oligosaccharides. Biochemistry. 1993 Nov 30;32(47):12715–12724. doi: 10.1021/bi00210a021. [DOI] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sato K., Ohtomo T., Hirata Y., Saito H., Matsuura T., Akimoto T., Akamatsu K., Koishihara Y., Ohsugi Y., Tsuchiya M. Humanization of an anti-human IL-6 mouse monoclonal antibody glycosylated in its heavy chain variable region. Hum Antibodies Hybridomas. 1996;7(4):175–183. [PubMed] [Google Scholar]
  34. Savvidou G., Klein M., Grey A. A., Dorrington K. J., Carver J. P. Possible role for peptide-oligosaccharide interactions in differential oligosaccharide processing at asparagine-107 of the light chain and asparagine-297 of the heavy chain in a monoclonal IgG1 kappa. Biochemistry. 1984 Jul 31;23(16):3736–3740. doi: 10.1021/bi00311a026. [DOI] [PubMed] [Google Scholar]
  35. Songsivilai S., Bye J. M., Marks J. D., Hughes-Jones N. C. Cloning and sequencing of human lambda immunoglobulin genes by the polymerase chain reaction. Eur J Immunol. 1990 Dec;20(12):2661–2666. doi: 10.1002/eji.1830201220. [DOI] [PubMed] [Google Scholar]
  36. Sox H. C., Jr, Hood L. Attachment of carbohydrate to the variable region of myeloma immunoglobulin light chains. Proc Natl Acad Sci U S A. 1970 Jul;66(3):975–982. doi: 10.1073/pnas.66.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spiegelberg H. L., Abel C. A., Fishkin B. G., Grey H. M. Localization of the carbohydrate within the variable region of light and heavy chains of human gamma g myeloma proteins. Biochemistry. 1970 Oct 13;9(21):4217–4223. doi: 10.1021/bi00823a025. [DOI] [PubMed] [Google Scholar]
  38. Tandai M., Endo T., Sasaki S., Masuho Y., Kochibe N., Kobata A. Structural study of the sugar moieties of monoclonal antibodies secreted by human-mouse hybridoma. Arch Biochem Biophys. 1991 Dec;291(2):339–348. doi: 10.1016/0003-9861(91)90144-8. [DOI] [PubMed] [Google Scholar]
  39. Wallick S. C., Kabat E. A., Morrison S. L. Glycosylation of a VH residue of a monoclonal antibody against alpha (1----6) dextran increases its affinity for antigen. J Exp Med. 1988 Sep 1;168(3):1099–1109. doi: 10.1084/jem.168.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wright A., Tao M. H., Kabat E. A., Morrison S. L. Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J. 1991 Oct;10(10):2717–2723. doi: 10.1002/j.1460-2075.1991.tb07819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zauhar R. J., Morgan R. S. A new method for computing the macromolecular electric potential. J Mol Biol. 1985 Dec 20;186(4):815–820. doi: 10.1016/0022-2836(85)90399-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES