Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 1;338(Pt 2):561–568.

Regulation of UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosamine-1-phosphate transferase by retinoic acid in P19 cells.

J D Meissner 1, A Naumann 1, W H Mueller 1, R J Scheibe 1
PMCID: PMC1220086  PMID: 10024536

Abstract

UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosamine-1-phosphate transferase (GPT) is the first enzyme in the dolichol pathway of protein N-glycosylation, and is implicated in the developmental programmes of a variety of eukaryotes. In the present study we describe the effects of all-trans-retinoic acid (RA) on the levels of GPT protein and enzymic activity, and on the transcription rate of the GPT gene, in mouse P19 teratocarcinoma cells. RA caused a dose-dependent and protein-synthesis-dependent induction of enzyme activity. The maximum induction of GPT activity (about 3-fold) required 2 days of exposure to 1 microM RA. Induced GPT activity also resulted in an increase in the rate of incorporation of [3H]mannose into Glc3Man9GlcNAc2. Enzymic activities paralleled GPT gene expression. The GPT gene was induced (2-fold) after 7 h of RA treatment. An approx. 3-fold increase in a 48 kDa GPT protein and approx. 4-fold increases in the levels of three GPT transcripts (1.8, 2.0 and 2.2 kb) were observed after 2 days of RA treatment. The enhanced levels of GPT protein and mRNAs began to decline 3 days after the initiation of differentiation, and GPT expression was down-regulated during cellular differentiation. GPT activity decreased about 2. 8-fold to a constant level in differentiated P19 cells. The results indicate that the RA-induced enzyme activity was mainly determined by increased transcription of the GPT gene. RA-treated P19 cells were about 4-fold more resistant to tunicamycin, a fungal antibiotic which inhibits GPT, than were control cells. In addition, GPT activity in membranes from RA-treated P19 cells exhibited approx. 4-fold increased resistance to tunicamycin compared with activity in membranes from untreated control cells, demonstrating that resistance to tunicamycin is correlated with induced GPT activity. Furthermore, increased GPT activity had regulatory significance with regard to the rate of incorporation of [3H]mannose into Glc3Man9GlcNAc2-P-P-dolichol and into glycoproteins. Together, the data provide additional insights into the hormonal regulation of GPT and present evidence that the RA-mediated induction of GPT has a regulatory impact on the dolichol pathway.

Full Text

The Full Text of this article is available as a PDF (157.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos B., Lotan R. Modulation of lysosomal-associated membrane glycoproteins during retinoic acid-induced embryonal carcinoma cell differentiation. J Biol Chem. 1990 Nov 5;265(31):19192–19198. [PubMed] [Google Scholar]
  2. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996 Jul;10(9):940–954. [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Cho S. K., Yeh J., Cho M., Cummings R. D. Transcriptional regulation of alpha1,3-galactosyltransferase in embryonal carcinoma cells by retinoic acid. Masking of Lewis X antigens by alpha-galactosylation. J Biol Chem. 1996 Feb 9;271(6):3238–3246. doi: 10.1074/jbc.271.6.3238. [DOI] [PubMed] [Google Scholar]
  5. Clark G. F., Miller K. R., Smith P. B. Formation of dolichol-linked sugar intermediates during the postnatal development of skeletal muscle. J Biol Chem. 1983 Dec 10;258(23):14263–14270. [PubMed] [Google Scholar]
  6. Criscuolo B. A., Krag S. S. Selection of tunicamycin-resistant Chinese hamster ovary cells with increased N-acetylglucosaminyltransferase activity. J Cell Biol. 1982 Sep;94(3):586–591. doi: 10.1083/jcb.94.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cummings R. D., Mattox S. A. Retinoic acid-induced differentiation of the mouse teratocarcinoma cell line F9 is accompanied by an increase in the activity of UDP-galactose: beta-D-galactosyl-alpha 1,3-galactosyltransferase. J Biol Chem. 1988 Jan 5;263(1):511–519. [PubMed] [Google Scholar]
  8. Dan N., Lehrman M. A. Oligomerization of hamster UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase, an enzyme with multiple transmembrane spans. J Biol Chem. 1997 May 30;272(22):14214–14219. doi: 10.1074/jbc.272.22.14214. [DOI] [PubMed] [Google Scholar]
  9. Datta A. K., Lehrman M. A. Both potential dolichol recognition sequences of hamster GlcNAc-1-phosphate transferase are necessary for normal enzyme function. J Biol Chem. 1993 Jun 15;268(17):12663–12668. [PubMed] [Google Scholar]
  10. Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Gianní M., Terao M., Norio P., Barbui T., Rambaldi A., Garattini E. All-trans retinoic acid and cyclic adenosine monophosphate cooperate in the expression of leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood. 1995 Jun 15;85(12):3619–3635. [PubMed] [Google Scholar]
  13. Hayes G. R., Lucas J. J. Stimulation of lipid-linked oligosaccharide assembly during oviduct differentiation. J Biol Chem. 1983 Dec 25;258(24):15095–15100. [PubMed] [Google Scholar]
  14. Heffernan M., Lotan R., Amos B., Palcic M., Takano R., Dennis J. W. Branching beta 1-6N-acetylglucosaminetransferases and polylactosamine expression in mouse F9 teratocarcinoma cells and differentiated counterparts. J Biol Chem. 1993 Jan 15;268(2):1242–1251. [PubMed] [Google Scholar]
  15. Huang G. T., Lennon K., Kukuruzinska M. A. Characterization of multiple transcripts of the hamster dolichol-P-dependent N-acetylglucosamine-1-P transferase suggests functionally complex expression. Mol Cell Biochem. 1998 Apr;181(1-2):97–106. doi: 10.1023/a:1006877929614. [DOI] [PubMed] [Google Scholar]
  16. Jones-Villeneuve E. M., Rudnicki M. A., Harris J. F., McBurney M. W. Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Mol Cell Biol. 1983 Dec;3(12):2271–2279. doi: 10.1128/mcb.3.12.2271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaushal G. P., Elbein A. D. Purification and properties of UDP-GlcNAc:dolichyl-phosphate GlcNAc-1-phosphate transferase. Activation and inhibition of the enzyme. J Biol Chem. 1985 Dec 25;260(30):16303–16309. [PubMed] [Google Scholar]
  18. Kean E. L. Topographical orientation in microsomal vesicles of the N-acetylglucosaminyltransferases which catalyze the biosynthesis of N-acetylglucosaminylpyrophosphoryldolichol and N-acetylglucosaminyl-N-acetylglucosaminylpyrophosphoryldolichol. J Biol Chem. 1991 Jan 15;266(2):942–946. [PubMed] [Google Scholar]
  19. Kink J. A., Chang K. P. Tunicamycin-resistant Leishmania mexicana amazonensis: expression of virulence associated with an increased activity of N-acetylglucosaminyltransferase and amplification of its presumptive gene. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1253–1257. doi: 10.1073/pnas.84.5.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kudo T., Narimatsu H. The beta 1,4-galactosyltransferase gene is post-transcriptionally regulated during differentiation of mouse F9 teratocarcinoma cells. Glycobiology. 1995 Jun;5(4):397–403. doi: 10.1093/glycob/5.4.397. [DOI] [PubMed] [Google Scholar]
  21. Kukuruzinska M. A., Lennon K. Diminished activity of the first N-glycosylation enzyme, dolichol-P-dependent N-acetylglucosamine-1-P transferase (GPT), gives rise to mutant phenotypes in yeast. Biochim Biophys Acta. 1995 Feb 22;1247(1):51–59. doi: 10.1016/0167-4838(94)00201-q. [DOI] [PubMed] [Google Scholar]
  22. Kukuruzinska M. A., Lennon K. Growth-related coordinate regulation of the early N-glycosylation genes in yeast. Glycobiology. 1994 Aug;4(4):437–443. doi: 10.1093/glycob/4.4.437. [DOI] [PubMed] [Google Scholar]
  23. Kukuruzinska M. A., Robbins P. W. Protein glycosylation in yeast: transcript heterogeneity of the ALG7 gene. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2145–2149. doi: 10.1073/pnas.84.8.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kumar R., Yang J., Eddy R. L., Byers M. G., Shows T. B., Stanley P. Cloning and expression of the murine gene and chromosomal location of the human gene encoding N-acetylglucosaminyltransferase I. Glycobiology. 1992 Aug;2(4):383–393. doi: 10.1093/glycob/2.4.383. [DOI] [PubMed] [Google Scholar]
  25. Laferte S., Dennis J. W. Purification of two glycoproteins expressing beta 1-6 branched Asn-linked oligosaccharides from metastatic tumour cells. Biochem J. 1989 Apr 15;259(2):569–576. doi: 10.1042/bj2590569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lehrman M. A. Biosynthesis of N-acetylglucosamine-P-P-dolichol, the committed step of asparagine-linked oligosaccharide assembly. Glycobiology. 1991 Dec;1(6):553–562. doi: 10.1093/glycob/1.6.553. [DOI] [PubMed] [Google Scholar]
  27. Lehrman M. A., Zhu X. Y., Khounlo S. Amplification and molecular cloning of the hamster tunicamycin-sensitive N-acetylglucosamine-1-phosphate transferase gene. The hamster and yeast enzymes share a common peptide sequence. J Biol Chem. 1988 Dec 25;263(36):19796–19803. [PubMed] [Google Scholar]
  28. Lopez L. C., Maillet C. M., Oleszkowicz K., Shur B. D. Cell surface and Golgi pools of beta-1,4-galactosyltransferase are differentially regulated during embryonal carcinoma cell differentiation. Mol Cell Biol. 1989 Jun;9(6):2370–2377. doi: 10.1128/mcb.9.6.2370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lucas J. J., Levin E. Increase in the lipid intermediate pathway of protein glycosylation during hen oviduct differentiation. J Biol Chem. 1977 Jun 25;252(12):4330–4336. [PubMed] [Google Scholar]
  30. Ma J., Saito H., Oka T., Vijay I. K. Negative regulatory element involved in the hormonal regulation of GlcNAc-1-P transferase gene in mouse mammary gland. J Biol Chem. 1996 May 10;271(19):11197–11203. doi: 10.1074/jbc.271.19.11197. [DOI] [PubMed] [Google Scholar]
  31. Mota O. M., Huang G. T., Kukuruzinska M. A. Developmental regulation and tissue-specific expression of hamster dolichol-P-dependent N-acetylglucosamine-1-P transferase (GPT). Biochem Biophys Res Commun. 1994 Oct 14;204(1):284–291. doi: 10.1006/bbrc.1994.2457. [DOI] [PubMed] [Google Scholar]
  32. Muramatsu H., Muramatsu T. A fucosyltransferase in teratocarcinoma stem cells. Decreased activity accompanying differentiation to parietal endoderm cells. FEBS Lett. 1983 Nov 14;163(2):181–184. doi: 10.1016/0014-5793(83)80814-x. [DOI] [PubMed] [Google Scholar]
  33. Oda-Tamai S., Kato S., Akamatsu N. Postnatal changes in dolichol-pathway enzyme activities in rat liver. Biochem J. 1989 Jul 15;261(2):371–375. doi: 10.1042/bj2610371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rajput B., Ma J., Muniappa N., Schantz L., Naylor S. L., Lalley P. A., Vijay I. K. Mouse UDP-GlcNAc: dolichyl-phosphate N-acetylglucosaminephosphotransferase. Molecular cloning of the cDNA, generation of anti-peptide antibodies and chromosomal localization. Biochem J. 1992 Aug 1;285(Pt 3):985–992. doi: 10.1042/bj2850985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rajput B., Ma J., Vijay I. K. Structure and organization of mouse GlcNAc-1-phosphate transferase gene. J Biol Chem. 1994 Apr 1;269(13):9590–9597. [PubMed] [Google Scholar]
  36. Rajput B., Ma J., Vijay I. K. Structure and organization of mouse GlcNAc-1-phosphate transferase gene. J Biol Chem. 1994 Apr 1;269(13):9590–9597. [PubMed] [Google Scholar]
  37. Rine J., Hansen W., Hardeman E., Davis R. W. Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6750–6754. doi: 10.1073/pnas.80.22.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scheibe R. J., Moeller-Runge I., Mueller W. H. Retinoic acid induces the expression of alkaline phosphatase in P19 teratocarcinoma cells. J Biol Chem. 1991 Nov 5;266(31):21300–21305. [PubMed] [Google Scholar]
  39. Starr C. M., Lucas J. J. Regulation of dolichyl phosphate-mediated protein glycosylation: estrogen effects on glucosyl transfers in oviduct membranes. Arch Biochem Biophys. 1985 Feb 15;237(1):261–270. doi: 10.1016/0003-9861(85)90277-2. [DOI] [PubMed] [Google Scholar]
  40. Strickland S., Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978 Oct;15(2):393–403. doi: 10.1016/0092-8674(78)90008-9. [DOI] [PubMed] [Google Scholar]
  41. Tabas I., Kornfeld S. N-asparagine-linked oligosaccharides: processing. Methods Enzymol. 1982;83:416–429. doi: 10.1016/0076-6879(82)83039-5. [DOI] [PubMed] [Google Scholar]
  42. Tkacz J. S., Lampen O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun. 1975 Jul 8;65(1):248–257. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
  43. Turco S. J. Rapid separation of high-mannose-type oligosaccharides by high-pressure liquid chromatography. Anal Biochem. 1981 Dec;118(2):278–283. doi: 10.1016/0003-2697(81)90582-0. [DOI] [PubMed] [Google Scholar]
  44. Vijay I. K., Oka T. Developmental regulation of glycosyltransferases involved in biosynthesis of asparagine-linked glycoproteins in mouse mammary gland. Eur J Biochem. 1986 Jan 2;154(1):57–62. doi: 10.1111/j.1432-1033.1986.tb09358.x. [DOI] [PubMed] [Google Scholar]
  45. Waldman B. C., Oliver C., Krag S. S. A clonal derivative of tunicamycin-resistant Chinese hamster ovary cells with increased N-acetylglucosamine-phosphate transferase activity has altered asparagine-linked glycosylation. J Cell Physiol. 1987 Jun;131(3):302–317. doi: 10.1002/jcp.1041310303. [DOI] [PubMed] [Google Scholar]
  46. Welply J. K., Lau J. T., Lennarz W. J. Developmental regulation of glycosyltransferases involved in synthesis of N-linked glycoproteins in sea urchin embryos. Dev Biol. 1985 Jan;107(1):252–258. doi: 10.1016/0012-1606(85)90393-8. [DOI] [PubMed] [Google Scholar]
  47. Yang J., Bhaumik M., Liu Y., Stanley P. Regulation of N-linked glycosylation. Neuronal cell-specific expression of a 5' extended transcript from the gene encoding N-acetylglucosaminyltransferase I. Glycobiology. 1994 Oct;4(5):703–712. doi: 10.1093/glycob/4.5.703. [DOI] [PubMed] [Google Scholar]
  48. Zhu X. Y., Lehrman M. A. Cloning, sequence, and expression of a cDNA encoding hamster UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1-phosphate transferase. J Biol Chem. 1990 Aug 25;265(24):14250–14255. [PubMed] [Google Scholar]
  49. Zhu X., Zeng Y., Lehrman M. A. Evidence that the hamster tunicamycin resistance gene encodes UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1-phosphate transferase. J Biol Chem. 1992 May 5;267(13):8895–8902. [PubMed] [Google Scholar]
  50. Zou J., Scocca J. R., Krag S. S. Asparagine-linked glycosylation in Schizosaccharomyces pombe: functional conservation of the first step in oligosaccharide-lipid assembly. Arch Biochem Biophys. 1995 Mar 10;317(2):487–496. doi: 10.1006/abbi.1995.1192. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES