Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):583–589.

Three distinct anti-allergic drugs, amlexanox, cromolyn and tranilast, bind to S100A12 and S100A13 of the S100 protein family.

T Shishibori 1, Y Oyama 1, O Matsushita 1, K Yamashita 1, H Furuichi 1, A Okabe 1, H Maeta 1, Y Hata 1, R Kobayashi 1
PMCID: PMC1220090  PMID: 10051426

Abstract

To investigate the roles of calcium-binding proteins in degranulation, we used three anti-allergic drugs, amlexanox, cromolyn and tranilast, which inhibit IgE-mediated degranulation of mast cells, as molecular probes in affinity chromatography. All of these drugs, which have different structures but similar function, scarcely bound to calmodulin in bovine lung extract, but bound to the same kinds of calcium-binding proteins, such as the 10-kDa proteins isolated in this study, calcyphosine and annexins I-V. The 10-kDa proteins obtained on three drug-coupled resins and on phenyl-Sepharose were analysed by reversed-phase HPLC. It was found that two characteristic 10-kDa proteins, one polar and one less polar, were bound with all three drugs, although S100A2 (S100L), of the S100 family, was bound with phenyl-Sepharose. The cDNA and deduced amino acid sequence proved our major polar protein to be identical with the calcium-binding protein in bovine amniotic fluid (CAAF1, S100A12). The cDNA and deduced amino acid sequence of the less-polar protein shared 95% homology with human and mouse S100A13. In addition, it was demonstrated that the native S100A12 and recombinant S100A12 and S100A13 bind to immobilized amlexanox. On the basis of these findings, we speculate that the three anti-allergic drugs might inhibit degranulation by binding with S100A12 and S100A13.

Full Text

The Full Text of this article is available as a PDF (182.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S. M., Geisow M. J., Burgoyne R. D. A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells. Nature. 1989 Jul 27;340(6231):313–315. doi: 10.1038/340313a0. [DOI] [PubMed] [Google Scholar]
  2. Beasley R., Burgess C., Crane J., Pearce N., Roche W. Pathology of asthma and its clinical implications. J Allergy Clin Immunol. 1993 Jul;92(1 Pt 2):148–154. doi: 10.1016/0091-6749(93)90097-y. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Caohuy H., Srivastava M., Pollard H. B. Membrane fusion protein synexin (annexin VII) as a Ca2+/GTP sensor in exocytotic secretion. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10797–10802. doi: 10.1073/pnas.93.20.10797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cochrane D. E., Distel D. L., Lansman J. B., Paterson B. M. Stimulus-secretion coupling in rat mast cells: inactivation of extracellular calcium dependent secretion. J Physiol. 1982 Feb;323:423–435. doi: 10.1113/jphysiol.1982.sp014082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Creutz C. E., Pazoles C. J., Pollard H. B. Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J Biol Chem. 1978 Apr 25;253(8):2858–2866. [PubMed] [Google Scholar]
  7. Dell'Angelica E. C., Schleicher C. H., Santomé J. A. Primary structure and binding properties of calgranulin C, a novel S100-like calcium-binding protein from pig granulocytes. J Biol Chem. 1994 Nov 18;269(46):28929–28936. [PubMed] [Google Scholar]
  8. Drust D. S., Creutz C. E. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature. 1988 Jan 7;331(6151):88–91. doi: 10.1038/331088a0. [DOI] [PubMed] [Google Scholar]
  9. Ferro-Novick S., Jahn R. Vesicle fusion from yeast to man. Nature. 1994 Jul 21;370(6486):191–193. doi: 10.1038/370191a0. [DOI] [PubMed] [Google Scholar]
  10. Glenney J. R., Jr, Kindy M. S., Zokas L. Isolation of a new member of the S100 protein family: amino acid sequence, tissue, and subcellular distribution. J Cell Biol. 1989 Feb;108(2):569–578. doi: 10.1083/jcb.108.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gomperts B. D. GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol. 1990;52:591–606. doi: 10.1146/annurev.ph.52.030190.003111. [DOI] [PubMed] [Google Scholar]
  12. Harder T., Gerke V. The subcellular distribution of early endosomes is affected by the annexin II2p11(2) complex. J Cell Biol. 1993 Dec;123(5):1119–1132. doi: 10.1083/jcb.123.5.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hemmerich S., Yarden Y., Pecht I. A cromoglycate binding protein from rat mast cells of a leukemia line is a nucleoside diphosphate kinase. Biochemistry. 1992 May 19;31(19):4574–4579. doi: 10.1021/bi00134a006. [DOI] [PubMed] [Google Scholar]
  14. Hitomi J., Yamaguchi K., Kikuchi Y., Kimura T., Maruyama K., Nagasaki K. A novel calcium-binding protein in amniotic fluid, CAAF1: its molecular cloning and tissue distribution. J Cell Sci. 1996 Apr;109(Pt 4):805–815. doi: 10.1242/jcs.109.4.805. [DOI] [PubMed] [Google Scholar]
  15. Jackson R., Sears M. R., Beaglehole R., Rea H. H. International trends in asthma mortality: 1970 to 1985. Chest. 1988 Nov;94(5):914–918. doi: 10.1378/chest.94.5.914. [DOI] [PubMed] [Google Scholar]
  16. Kemp J. P. Approaches to asthma management. Realities and recommendations. Arch Intern Med. 1993 Apr 12;153(7):805–812. [PubMed] [Google Scholar]
  17. Lindau M., Gomperts B. D. Techniques and concepts in exocytosis: focus on mast cells. Biochim Biophys Acta. 1991 Dec 12;1071(4):429–471. doi: 10.1016/0304-4157(91)90006-i. [DOI] [PubMed] [Google Scholar]
  18. Mazurek N., Bashkin P., Pecht I. Isolation of a basophilic membrane protein binding the anti-allergic drug cromolyn. EMBO J. 1982;1(5):585–590. doi: 10.1002/j.1460-2075.1982.tb01212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mukai H., Chang C. D., Tanaka H., Ito A., Kuno T., Tanaka C. cDNA cloning of a novel testis-specific calcineurin B-like protein. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1325–1330. doi: 10.1016/0006-291x(91)91718-r. [DOI] [PubMed] [Google Scholar]
  20. Okazaki K., Niki I., Iino S., Kobayashi S., Hidaka H. A role of calcyclin, a Ca(2+)-binding protein, on the Ca(2+)-dependent insulin release from the pancreatic beta cell. J Biol Chem. 1994 Feb 25;269(8):6149–6152. [PubMed] [Google Scholar]
  21. Oyama Y., Shishibori T., Yamashita K., Naya T., Nakagiri S., Maeta H., Kobayashi R. Two distinct anti-allergic drugs, amlexanox and cromolyn, bind to the same kinds of calcium binding proteins, except calmodulin, in bovine lung extract. Biochem Biophys Res Commun. 1997 Nov 17;240(2):341–347. doi: 10.1006/bbrc.1997.7476. [DOI] [PubMed] [Google Scholar]
  22. Pollard H. B., Burns A. L., Rojas E. A molecular basis for synexin-driven, calcium-dependent membrane fusion. J Exp Biol. 1988 Sep;139:267–286. doi: 10.1242/jeb.139.1.267. [DOI] [PubMed] [Google Scholar]
  23. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  24. Siraganian R. P., Kulczycki A., Jr, Mendoza G., Metzger H. Ionophore A-23187 induced histamine release from rat mast cells and rat basophil leukemia (RBL-1) cells. J Immunol. 1975 Dec;115(6):1599–1602. [PubMed] [Google Scholar]
  25. Timmons P. M., Chan C. T., Rigby P. W., Poirier F. The gene encoding the calcium binding protein calcyclin is expressed at sites of exocytosis in the mouse. J Cell Sci. 1993 Jan;104(Pt 1):187–196. doi: 10.1242/jcs.104.1.187. [DOI] [PubMed] [Google Scholar]
  26. Wicki R., Schäfer B. W., Erne P., Heizmann C. W. Characterization of the human and mouse cDNAs coding for S100A13, a new member of the S100 protein family. Biochem Biophys Res Commun. 1996 Oct 14;227(2):594–599. doi: 10.1006/bbrc.1996.1551. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES