Abstract
Extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs, or stress-activated protein kinases) are activated by diverse extracellular signals and mediate a variety of cellular responses, including mitogenesis, differentiation, hypertrophy, inflammatory reactions and apoptosis. We have examined the involvement of Ca2+ and protein kinase C (PKC) in ERK and JNK activation by the human G-protein-coupled m2 and m3 muscarinic acetylcholine receptors (mAChR) expressed in Chinese hamster ovary (CHO) cells. We show that the Ca2+-mobilizing m3 AChR is efficiently coupled to JNK and ERK activation, whereas the m2 AChR activates ERK but not JNK. Activation of JNK in CHO-m3 cells by the agonist methacholine (MCh) was delayed in onset and more sustained relative to that of ERK in either CHO-m2 or CHO-m3 cells. The EC50 values for MCh-induced ERK activation in both cell types were essentially identical and similar to that for JNK activation in CHO-m3 cells, suggesting little amplification of the response. Agonist-stimulated Ins(1,4,5)P3 accumulation in CHO-m3 cells was insensitive to pertussis toxin (PTX), consistent with a Gq/phosphoinositide-specific phospholipase C-beta mediated pathway, whereas a significant component of ERK and JNK activation in CHO-m3 cells was PTX-sensitive, indicating Gi/o involvement. Using manipulations that prevent receptor-mediated extracellular Ca2+ influx and intracellular Ca2+-store release, we also show that ERK activation by m2 and m3 receptors is Ca2+-independent. In contrast, a significant component (>50%) of JNK activation mediated by the m3 AChR was dependent on Ca2+, mainly derived from extracellular influx. PKC inhibition and down-regulation studies suggested that JNK activation was negatively regulated by PKC. Conversely, ERK activation by both m2 and m3 AChRs required PKC, suggesting a novel mechanism for PKC activation by PTX-sensitive m2 AChRs. In summary, mAChRs activate JNK and ERK via divergent mechanisms involving either Ca2+ or PKC respectively.
Full Text
The Full Text of this article is available as a PDF (293.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aragay A. M., Collins L. R., Post G. R., Watson A. J., Feramisco J. R., Brown J. H., Simon M. I. G12 requirement for thrombin-stimulated gene expression and DNA synthesis in 1321N1 astrocytoma cells. J Biol Chem. 1995 Aug 25;270(34):20073–20077. doi: 10.1074/jbc.270.34.20073. [DOI] [PubMed] [Google Scholar]
- Beltman J., McCormick F., Cook S. J. The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase. J Biol Chem. 1996 Oct 25;271(43):27018–27024. doi: 10.1074/jbc.271.43.27018. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Bogoyevitch M. A., Ketterman A. J., Sugden P. H. Cellular stresses differentially activate c-Jun N-terminal protein kinases and extracellular signal-regulated protein kinases in cultured ventricular myocytes. J Biol Chem. 1995 Dec 15;270(50):29710–29717. doi: 10.1074/jbc.270.50.29710. [DOI] [PubMed] [Google Scholar]
- Burford N. T., Tobin A. B., Nahorski S. R. Coupling of muscarinic m1, m2 and m3 acetylcholine receptors, expressed in Chinese hamster ovary cells, to pertussis toxin-sensitive/insensitive guanine nucleotide-binding proteins. Eur J Pharmacol. 1995 Apr 28;289(2):343–351. doi: 10.1016/0922-4106(95)90112-4. [DOI] [PubMed] [Google Scholar]
- Cadwallader K., Beltman J., McCormick F., Cook S. Differential regulation of extracellular signal-regulated protein kinase 1 and Jun N-terminal kinase 1 by Ca2+ and protein kinase C in endothelin-stimulated Rat-1 cells. Biochem J. 1997 Feb 1;321(Pt 3):795–804. doi: 10.1042/bj3210795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caulfield M. P. Muscarinic receptors--characterization, coupling and function. Pharmacol Ther. 1993 Jun;58(3):319–379. doi: 10.1016/0163-7258(93)90027-b. [DOI] [PubMed] [Google Scholar]
- Challiss R. A., Batty I. H., Nahorski S. R. Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem Biophys Res Commun. 1988 Dec 15;157(2):684–691. doi: 10.1016/s0006-291x(88)80304-8. [DOI] [PubMed] [Google Scholar]
- Cobb M. H., Goldsmith E. J. How MAP kinases are regulated. J Biol Chem. 1995 Jun 23;270(25):14843–14846. doi: 10.1074/jbc.270.25.14843. [DOI] [PubMed] [Google Scholar]
- Collins L. R., Minden A., Karin M., Brown J. H. Galpha12 stimulates c-Jun NH2-terminal kinase through the small G proteins Ras and Rac. J Biol Chem. 1996 Jul 19;271(29):17349–17353. doi: 10.1074/jbc.271.29.17349. [DOI] [PubMed] [Google Scholar]
- Coso O. A., Chiariello M., Kalinec G., Kyriakis J. M., Woodgett J., Gutkind J. S. Transforming G protein-coupled receptors potently activate JNK (SAPK). Evidence for a divergence from the tyrosine kinase signaling pathway. J Biol Chem. 1995 Mar 10;270(10):5620–5624. doi: 10.1074/jbc.270.10.5620. [DOI] [PubMed] [Google Scholar]
- Coso O. A., Teramoto H., Simonds W. F., Gutkind J. S. Signaling from G protein-coupled receptors to c-Jun kinase involves beta gamma subunits of heterotrimeric G proteins acting on a Ras and Rac1-dependent pathway. J Biol Chem. 1996 Feb 23;271(8):3963–3966. doi: 10.1074/jbc.271.8.3963. [DOI] [PubMed] [Google Scholar]
- Crespo P., Xu N., Simonds W. F., Gutkind J. S. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature. 1994 Jun 2;369(6479):418–420. doi: 10.1038/369418a0. [DOI] [PubMed] [Google Scholar]
- Daaka Y., Luttrell L. M., Ahn S., Della Rocca G. J., Ferguson S. S., Caron M. G., Lefkowitz R. J. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem. 1998 Jan 9;273(2):685–688. doi: 10.1074/jbc.273.2.685. [DOI] [PubMed] [Google Scholar]
- Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
- De Vivo M., Chen J., Codina J., Iyengar R. Enhanced phospholipase C stimulation and transformation in NIH-3T3 cells expressing Q209LGq-alpha-subunits. J Biol Chem. 1992 Sep 15;267(26):18263–18266. [PubMed] [Google Scholar]
- Della Rocca G. J., van Biesen T., Daaka Y., Luttrell D. K., Luttrell L. M., Lefkowitz R. J. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem. 1997 Aug 1;272(31):19125–19132. doi: 10.1074/jbc.272.31.19125. [DOI] [PubMed] [Google Scholar]
- Dikic I., Tokiwa G., Lev S., Courtneidge S. A., Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996 Oct 10;383(6600):547–550. doi: 10.1038/383547a0. [DOI] [PubMed] [Google Scholar]
- Dolmetsch R. E., Lewis R. S., Goodnow C. C., Healy J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997 Apr 24;386(6627):855–858. doi: 10.1038/386855a0. [DOI] [PubMed] [Google Scholar]
- Ebinu J. O., Bottorff D. A., Chan E. Y., Stang S. L., Dunn R. J., Stone J. C. RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science. 1998 May 15;280(5366):1082–1086. doi: 10.1126/science.280.5366.1082. [DOI] [PubMed] [Google Scholar]
- Enslen H., Tokumitsu H., Stork P. J., Davis R. J., Soderling T. R. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10803–10808. doi: 10.1073/pnas.93.20.10803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fanger G. R., Johnson N. L., Johnson G. L. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J. 1997 Aug 15;16(16):4961–4972. doi: 10.1093/emboj/16.16.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faure M., Voyno-Yasenetskaya T. A., Bourne H. R. cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem. 1994 Mar 18;269(11):7851–7854. [PubMed] [Google Scholar]
- Finkbeiner S., Greenberg M. E. Ca(2+)-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron. 1996 Feb;16(2):233–236. doi: 10.1016/s0896-6273(00)80040-9. [DOI] [PubMed] [Google Scholar]
- Gardner A. M., Lange-Carter C. A., Vaillancourt R. R., Johnson G. L. Measuring activation of kinases in mitogen-activated protein kinase regulatory network. Methods Enzymol. 1994;238:258–270. doi: 10.1016/0076-6879(94)38024-4. [DOI] [PubMed] [Google Scholar]
- Gerwins P., Blank J. L., Johnson G. L. Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J Biol Chem. 1997 Mar 28;272(13):8288–8295. doi: 10.1074/jbc.272.13.8288. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Gupta S. K., Gallego C., Johnson G. L., Heasley L. E. MAP kinase is constitutively activated in gip2 and src transformed rat 1a fibroblasts. J Biol Chem. 1992 Apr 25;267(12):7987–7990. [PubMed] [Google Scholar]
- Gupta S., Barrett T., Whitmarsh A. J., Cavanagh J., Sluss H. K., Dérijard B., Davis R. J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996 Jun 3;15(11):2760–2770. [PMC free article] [PubMed] [Google Scholar]
- Gutkind J. S. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem. 1998 Jan 23;273(4):1839–1842. doi: 10.1074/jbc.273.4.1839. [DOI] [PubMed] [Google Scholar]
- Hawes B. E., van Biesen T., Koch W. J., Luttrell L. M., Lefkowitz R. J. Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation. J Biol Chem. 1995 Jul 21;270(29):17148–17153. doi: 10.1074/jbc.270.29.17148. [DOI] [PubMed] [Google Scholar]
- Heasley L. E., Storey B., Fanger G. R., Butterfield L., Zamarripa J., Blumberg D., Maue R. A. GTPase-deficient G alpha 16 and G alpha q induce PC12 cell differentiation and persistent activation of cJun NH2-terminal kinases. Mol Cell Biol. 1996 Feb;16(2):648–656. doi: 10.1128/mcb.16.2.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalinec G., Nazarali A. J., Hermouet S., Xu N., Gutkind J. S. Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol Cell Biol. 1992 Oct;12(10):4687–4693. doi: 10.1128/mcb.12.10.4687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kharbanda S., Saleem A., Shafman T., Emoto Y., Taneja N., Rubin E., Weichselbaum R., Woodgett J., Avruch J., Kyriakis J. Ionizing radiation stimulates a Grb2-mediated association of the stress-activated protein kinase with phosphatidylinositol 3-kinase. J Biol Chem. 1995 Aug 11;270(32):18871–18874. doi: 10.1074/jbc.270.32.18871. [DOI] [PubMed] [Google Scholar]
- Koch W. J., Hawes B. E., Allen L. F., Lefkowitz R. J. Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12706–12710. doi: 10.1073/pnas.91.26.12706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyriakis J. M., Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem. 1996 Oct 4;271(40):24313–24316. doi: 10.1074/jbc.271.40.24313. [DOI] [PubMed] [Google Scholar]
- Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
- Lambert D. G., Ghataorre A. S., Nahorski S. R. Muscarinic receptor binding characteristics of a human neuroblastoma SK-N-SH and its clones SH-SY5Y and SH-EP1. Eur J Pharmacol. 1989 Jun 8;165(1):71–77. doi: 10.1016/0014-2999(89)90771-1. [DOI] [PubMed] [Google Scholar]
- Lopez-Ilasaca M., Crespo P., Pellici P. G., Gutkind J. S., Wetzker R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science. 1997 Jan 17;275(5298):394–397. doi: 10.1126/science.275.5298.394. [DOI] [PubMed] [Google Scholar]
- Lopez-Ilasaca M., Gutkind J. S., Wetzker R. Phosphoinositide 3-kinase gamma is a mediator of Gbetagamma-dependent Jun kinase activation. J Biol Chem. 1998 Jan 30;273(5):2505–2508. doi: 10.1074/jbc.273.5.2505. [DOI] [PubMed] [Google Scholar]
- Luttrell L. M., Della Rocca G. J., van Biesen T., Luttrell D. K., Lefkowitz R. J. Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J Biol Chem. 1997 Feb 14;272(7):4637–4644. doi: 10.1074/jbc.272.7.4637. [DOI] [PubMed] [Google Scholar]
- Marais R., Light Y., Mason C., Paterson H., Olson M. F., Marshall C. J. Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science. 1998 Apr 3;280(5360):109–112. doi: 10.1126/science.280.5360.109. [DOI] [PubMed] [Google Scholar]
- Mattingly R. R., Macara I. G. Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptors and G-protein beta gamma subunits. Nature. 1996 Jul 18;382(6588):268–272. doi: 10.1038/382268a0. [DOI] [PubMed] [Google Scholar]
- Minden A., Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta. 1997 Oct 24;1333(2):F85–104. doi: 10.1016/s0304-419x(97)00018-8. [DOI] [PubMed] [Google Scholar]
- Mitchell F. M., Russell M., Johnson G. L. Differential calcium dependence in the activation of c-Jun kinase and mitogen-activated protein kinase by muscarinic acetylcholine receptors in rat 1a cells. Biochem J. 1995 Jul 15;309(Pt 2):381–384. doi: 10.1042/bj3090381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell R., McCulloch D., Lutz E., Johnson M., MacKenzie C., Fennell M., Fink G., Zhou W., Sealfon S. C. Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature. 1998 Mar 26;392(6674):411–414. doi: 10.1038/32937. [DOI] [PubMed] [Google Scholar]
- Mitsui H., Takuwa N., Kurokawa K., Exton J. H., Takuwa Y. Dependence of activated Galpha12-induced G1 to S phase cell cycle progression on both Ras/mitogen-activated protein kinase and Ras/Rac1/Jun N-terminal kinase cascades in NIH3T3 fibroblasts. J Biol Chem. 1997 Feb 21;272(8):4904–4910. doi: 10.1074/jbc.272.8.4904. [DOI] [PubMed] [Google Scholar]
- Newton A. C. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995 Dec 1;270(48):28495–28498. doi: 10.1074/jbc.270.48.28495. [DOI] [PubMed] [Google Scholar]
- Prasad M. V., Dermott J. M., Heasley L. E., Johnson G. L., Dhanasekaran N. Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of G alpha 12 and G alpha 13. J Biol Chem. 1995 Aug 4;270(31):18655–18659. doi: 10.1074/jbc.270.31.18655. [DOI] [PubMed] [Google Scholar]
- Ramirez M. T., Sah V. P., Zhao X. L., Hunter J. J., Chien K. R., Brown J. H. The MEKK-JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem. 1997 May 30;272(22):14057–14061. doi: 10.1074/jbc.272.22.14057. [DOI] [PubMed] [Google Scholar]
- Schönwasser D. C., Marais R. M., Marshall C. J., Parker P. J. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol. 1998 Feb;18(2):790–798. doi: 10.1128/mcb.18.2.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro P. S., Evans J. N., Davis R. J., Posada J. A. The seven-transmembrane-spanning receptors for endothelin and thrombin cause proliferation of airway smooth muscle cells and activation of the extracellular regulated kinase and c-Jun NH2-terminal kinase groups of mitogen-activated protein kinases. J Biol Chem. 1996 Mar 8;271(10):5750–5754. doi: 10.1074/jbc.271.10.5750. [DOI] [PubMed] [Google Scholar]
- Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
- Strathmann M., Wilkie T. M., Simon M. I. Alternative splicing produces transcripts encoding two forms of the alpha subunit of GTP-binding protein Go. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6477–6481. doi: 10.1073/pnas.87.17.6477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su B., Jacinto E., Hibi M., Kallunki T., Karin M., Ben-Neriah Y. JNK is involved in signal integration during costimulation of T lymphocytes. Cell. 1994 Jun 3;77(5):727–736. doi: 10.1016/0092-8674(94)90056-6. [DOI] [PubMed] [Google Scholar]
- Tobin A. B., Willars G. B., Burford N. T., Nahorski S. R. Relationship between agonist binding, phosphorylation and immunoprecipitation of the m3-muscarinic receptor, and second messenger responses. Br J Pharmacol. 1995 Sep;116(2):1723–1728. doi: 10.1111/j.1476-5381.1995.tb16654.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokiwa G., Dikic I., Lev S., Schlessinger J. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science. 1996 Aug 9;273(5276):792–794. doi: 10.1126/science.273.5276.792. [DOI] [PubMed] [Google Scholar]
- Voyno-Yasenetskaya T. A., Faure M. P., Ahn N. G., Bourne H. R. Galpha12 and Galpha13 regulate extracellular signal-regulated kinase and c-Jun kinase pathways by different mechanisms in COS-7 cells. J Biol Chem. 1996 Aug 30;271(35):21081–21087. doi: 10.1074/jbc.271.35.21081. [DOI] [PubMed] [Google Scholar]
- Winitz S., Russell M., Qian N. X., Gardner A., Dwyer L., Johnson G. L. Involvement of Ras and Raf in the Gi-coupled acetylcholine muscarinic m2 receptor activation of mitogen-activated protein (MAP) kinase kinase and MAP kinase. J Biol Chem. 1993 Sep 15;268(26):19196–19199. [PubMed] [Google Scholar]
- Yu H., Li X., Marchetto G. S., Dy R., Hunter D., Calvo B., Dawson T. L., Wilm M., Anderegg R. J., Graves L. M. Activation of a novel calcium-dependent protein-tyrosine kinase. Correlation with c-Jun N-terminal kinase but not mitogen-activated protein kinase activation. J Biol Chem. 1996 Nov 22;271(47):29993–29998. doi: 10.1074/jbc.271.47.29993. [DOI] [PubMed] [Google Scholar]
- Zohn I. E., Yu H., Li X., Cox A. D., Earp H. S. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase. Mol Cell Biol. 1995 Nov;15(11):6160–6168. doi: 10.1128/mcb.15.11.6160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Biesen T., Hawes B. E., Luttrell D. K., Krueger K. M., Touhara K., Porfiri E., Sakaue M., Luttrell L. M., Lefkowitz R. J. Receptor-tyrosine-kinase- and G beta gamma-mediated MAP kinase activation by a common signalling pathway. Nature. 1995 Aug 31;376(6543):781–784. doi: 10.1038/376781a0. [DOI] [PubMed] [Google Scholar]
- van Biesen T., Hawes B. E., Raymond J. R., Luttrell L. M., Koch W. J., Lefkowitz R. J. G(o)-protein alpha-subunits activate mitogen-activated protein kinase via a novel protein kinase C-dependent mechanism. J Biol Chem. 1996 Jan 19;271(3):1266–1269. doi: 10.1074/jbc.271.3.1266. [DOI] [PubMed] [Google Scholar]