Abstract
Exposure of DNA to several proteins peroxidized by radiation-generated hydroxyl free radicals resulted in formation of crosslinks between the macromolecules, detected by retardation and broadening of DNA bands in agarose gels. This technique proved suitable for the study of crosslinking of DNA with peroxidized BSA, insulin, apotransferrin and alpha casein, but not with several other proteins, including histones. The crosslinking depended on the presence of intact hydroperoxide groups on the protein, on their number, and on the duration of the interaction with DNA. All DNA samples tested, pBR322, pGEM, lambda/HindIII and pUC18, formed crosslinks with the peroxidized BSA. Sodium chloride and formate prevented the crosslinking if present during incubation of the peroxidized protein and DNA, but had no effect once the crosslinks had formed. The gel shift of the crosslinked DNA was reversed by proteolysis, indicating that the DNA mobility change was due to attachment of protein and that the crosslinking did not induce DNA strand breaks. The metal chelators Desferal and neocuproine reduced the extent of the crosslinking, but did not prevent it. Scavengers of free radicals did not inhibit the crosslink formation. The DNA-protein complex was not disrupted by vigorous agitation, by filtration or by non-ionic detergents. These observations show that the crosslinking of DNA with proteins mediated by protein hydroperoxides is spontaneous and probably covalent, and that it may be assisted by transition metals. It is suggested that formation of such crosslinks in living organisms could account for some of the well-documented forms of biological damage induced by reactive oxygen species-induced oxidative stress.
Full Text
The Full Text of this article is available as a PDF (176.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aruoma O. I., Halliwell B., Gajewski E., Dizdaroglu M. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem. 1989 Dec 5;264(34):20509–20512. [PubMed] [Google Scholar]
- August J. Geneza i tło polityczne "Sonderaktion Krakau" 6 XI 1939. Przegl Lek. 1998;55(1):9–16. [PubMed] [Google Scholar]
- Bertoncini C. R., Meneghini R. DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3'-phosphoglycolate termini. Nucleic Acids Res. 1995 Aug 11;23(15):2995–3002. doi: 10.1093/nar/23.15.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohne L., Coquerelle T., Hagen U. Radiation sensitivity of bacteriophage DNA. II. Breaks and cross-links after irradiation in vivo. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;17(3):205–215. doi: 10.1080/09553007014550241. [DOI] [PubMed] [Google Scholar]
- Braun A., Merrick B. Properties of the ultraviolet-light-mediated binding of bovine serum albumin to DNA. Photochem Photobiol. 1975 Apr;21(4):243–247. doi: 10.1111/j.1751-1097.1975.tb06663.x. [DOI] [PubMed] [Google Scholar]
- Chiu S. M., Friedman L. R., Oleinick N. L. Formation and repair of DNA-protein crosslinks in newly replicated DNA. Radiat Res. 1989 Dec;120(3):545–551. [PubMed] [Google Scholar]
- Czichos J., Köhler M., Reckmann B., Renz M. Protein-DNA conjugates produced by UV irradiation and their use as probes for hybridization. Nucleic Acids Res. 1989 Feb 25;17(4):1563–1572. doi: 10.1093/nar/17.4.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies M. J., Fu S., Dean R. T. Protein hydroperoxides can give rise to reactive free radicals. Biochem J. 1995 Jan 15;305(Pt 2):643–649. doi: 10.1042/bj3050643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dizdaroglu M. Chemical determination of oxidative DNA damage by gas chromatography-mass spectrometry. Methods Enzymol. 1994;234:3–16. doi: 10.1016/0076-6879(94)34072-2. [DOI] [PubMed] [Google Scholar]
- Fu S., Davies M. J., Stocker R., Dean R. T. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem J. 1998 Aug 1;333(Pt 3):519–525. doi: 10.1042/bj3330519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gajewski E., Dizdaroglu M. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone. Biochemistry. 1990 Jan 30;29(4):977–980. doi: 10.1021/bi00456a020. [DOI] [PubMed] [Google Scholar]
- Gajewski E., Fuciarelli A. F., Dizdaroglu M. Structure of hydroxyl radical-induced DNA-protein crosslinks in calf thymus nucleohistone in vitro. Int J Radiat Biol. 1988 Sep;54(3):445–459. doi: 10.1080/09553008814551821. [DOI] [PubMed] [Google Scholar]
- Gajewski E., Rao G., Nackerdien Z., Dizdaroglu M. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry. 1990 Aug 28;29(34):7876–7882. doi: 10.1021/bi00486a014. [DOI] [PubMed] [Google Scholar]
- Gebicki S., Bartosz G., Gebicki J. M. The action of iron on amino acid and protein peroxides. Biochem Soc Trans. 1995 May;23(2):249S–249S. doi: 10.1042/bst023249s. [DOI] [PubMed] [Google Scholar]
- Gebicki S., Gebicki J. M. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J. 1993 Feb 1;289(Pt 3):743–749. doi: 10.1042/bj2890743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge J. M., Quinlan G. J. Antioxidant protection against organic and inorganic oxygen radicals by normal human plasma: the important primary role for iron-binding and iron-oxidising proteins. Biochim Biophys Acta. 1993 Feb 13;1156(2):144–150. doi: 10.1016/0304-4165(93)90129-v. [DOI] [PubMed] [Google Scholar]
- Halliwell B. Albumin--an important extracellular antioxidant? Biochem Pharmacol. 1988 Feb 15;37(4):569–571. doi: 10.1016/0006-2952(88)90126-8. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M., Cross C. E. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med. 1992 Jun;119(6):598–620. [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
- Hawkins R. B. Quantitative determination of cross-linkage of bacteriophage DNA and protein by ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1978 May;33(5):425–441. doi: 10.1080/09553007814550351. [DOI] [PubMed] [Google Scholar]
- Hazlewood C., Davies M. J. Benzoyl peroxide-induced damage to DNA and its components: direct evidence for the generation of base adducts, sugar radicals, and strand breaks. Arch Biochem Biophys. 1996 Aug 1;332(1):79–91. doi: 10.1006/abbi.1996.0319. [DOI] [PubMed] [Google Scholar]
- Hicks M., Gebicki J. M. A spectrophotometric method for the determination of lipid hydroperoxides. Anal Biochem. 1979 Nov 1;99(2):249–253. doi: 10.1016/s0003-2697(79)80003-2. [DOI] [PubMed] [Google Scholar]
- Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
- Jocelyn P. C. Chemical reduction of disulfides. Methods Enzymol. 1987;143:246–256. doi: 10.1016/0076-6879(87)43048-6. [DOI] [PubMed] [Google Scholar]
- Latour I., Demoulin J. B., Buc-Calderon P. Oxidative DNA damage by t-butyl hydroperoxide causes DNA single strand breaks which is not linked to cell lysis. A mechanistic study in freshly isolated rat hepatocytes. FEBS Lett. 1995 Oct 16;373(3):299–302. doi: 10.1016/0014-5793(95)01065-m. [DOI] [PubMed] [Google Scholar]
- Mee L. K., Adelstein S. J. Predominance of core histones in formation of DNA--protein crosslinks in gamma-irradiated chromatin. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2194–2198. doi: 10.1073/pnas.78.4.2194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minsky B. D., Braun A. X-ray-mediated cross linking of protein and DNA. Radiat Res. 1977 Sep;71(3):505–515. [PubMed] [Google Scholar]
- Nackerdien Z., Rao G., Cacciuttolo M. A., Gajewski E., Dizdaroglu M. Chemical nature of DNA-protein cross-links produced in mammalian chromatin by hydrogen peroxide in the presence of iron or copper ions. Biochemistry. 1991 May 21;30(20):4873–4879. doi: 10.1021/bi00234a006. [DOI] [PubMed] [Google Scholar]
- Olinski R., Briggs R. C., Hnilica L. S. Gamma-radiation-induced crosslinking of cell-specific chromosomal nonhistone protein-DNA complexes in HeLa chromatin. Radiat Res. 1981 Apr;86(1):102–114. [PubMed] [Google Scholar]
- Rodriguez H., Drouin R., Holmquist G. P., O'Connor T. R., Boiteux S., Laval J., Doroshow J. H., Akman S. A. Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated polymerase chain reaction. J Biol Chem. 1995 Jul 21;270(29):17633–17640. doi: 10.1074/jbc.270.29.17633. [DOI] [PubMed] [Google Scholar]
- Roots R., Okada S. Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks of killing of mammalian cells. Radiat Res. 1975 Nov;64(2):306–320. [PubMed] [Google Scholar]
- Schimmel P. R., Budzik G. P. Photo-cross-linking of protein-nucleic acid complexes. Methods Enzymol. 1977;46:168–180. doi: 10.1016/s0076-6879(77)46018-x. [DOI] [PubMed] [Google Scholar]
- Schuessler H., Jung E. Protein-DNA crosslinks induced by primary and secondary radicals. Int J Radiat Biol. 1989 Oct;56(4):423–435. doi: 10.1080/09553008914551581. [DOI] [PubMed] [Google Scholar]
- Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993 Jul 15;215(2):213–219. doi: 10.1111/j.1432-1033.1993.tb18025.x. [DOI] [PubMed] [Google Scholar]
- Simpson J. A., Narita S., Gieseg S., Gebicki S., Gebicki J. M., Dean R. T. Long-lived reactive species on free-radical-damaged proteins. Biochem J. 1992 Mar 15;282(Pt 3):621–624. doi: 10.1042/bj2820621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolff S. P., Dean R. T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J. 1986 Mar 1;234(2):399–403. doi: 10.1042/bj2340399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Sonntag C., Schuchmann H. P. Suppression of hydroxyl radical reactions in biological systems: considerations based on competition kinetics. Methods Enzymol. 1994;233:47–56. doi: 10.1016/s0076-6879(94)33007-7. [DOI] [PubMed] [Google Scholar]