Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):659–665.

Pyrrolidine dithiocarbamate up-regulates the expression of the genes encoding the catalytic and regulatory subunits of gamma-glutamylcysteine synthetase and increases intracellular glutathione levels.

A C Wild 1, R T Mulcahy 1
PMCID: PMC1220100  PMID: 10051436

Abstract

Time- and dose-dependent increases in the steady-state mRNA levels of the genes encoding the catalytic and regulatory subunits of the enzyme gamma-glutamylcysteine synthetase (GCS) were observed in HepG2 human hepatocarcinoma cells after exposure to pyrrolidine dithiocarbamate (PDTC). PDTC was demonstrated to manifest both antioxidant and pro-oxidant properties in HepG2 cells, as assessed by the decreased fluorescence of the redox-sensitive dye Dihydrorhodamine 123 and by the oxidation of glutathione respectively. Attempts to characterize the signalling pathway from PDTC exposure to increases in the expression of the GCS catalytic and regulatory subunit genes demonstrated that induction by PDTC could be partially blocked by treatment with the thiol agent N-acetylcysteine and by the copper chelator bathocuproine disulphonic acid. These findings suggested that the up-regulation of the two genes resulted from a PDTC-induced pro-oxidant signal, which was partially copper-dependent. In summary, these studies demonstrate that PDTC exposure elicits a cellular response in HepG2 cells, characterized by the induction of the genes encoding the two subunits of the enzyme GCS and increased de novo synthesis of the cellular protectant GSH.

Full Text

The Full Text of this article is available as a PDF (223.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartoli G. M., Müller A., Cadenas E., Sies H. Antioxidant effect of diethyldithiocarbamate on microsomal lipid peroxidation assessed by low-level chemiluminescence and alkane production. FEBS Lett. 1983 Dec 12;164(2):371–374. doi: 10.1016/0014-5793(83)80319-6. [DOI] [PubMed] [Google Scholar]
  2. Borroz K. I., Buetler T. M., Eaton D. L. Modulation of gamma-glutamylcysteine synthetase large subunit mRNA expression by butylated hydroxyanisole. Toxicol Appl Pharmacol. 1994 May;126(1):150–155. doi: 10.1006/taap.1994.1101. [DOI] [PubMed] [Google Scholar]
  3. Brennan P., O'Neill L. A. 2-mercaptoethanol restores the ability of nuclear factor kappa B (NF kappa B) to bind DNA in nuclear extracts from interleukin 1-treated cells incubated with pyrollidine dithiocarbamate (PDTC). Evidence for oxidation of glutathione in the mechanism of inhibition of NF kappa B by PDTC. Biochem J. 1996 Dec 15;320(Pt 3):975–981. doi: 10.1042/bj3200975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brennan P., O'Neill L. A. Effects of oxidants and antioxidants on nuclear factor kappa B activation in three different cell lines: evidence against a universal hypothesis involving oxygen radicals. Biochim Biophys Acta. 1995 Jan 25;1260(2):167–175. doi: 10.1016/0167-4781(94)00186-7. [DOI] [PubMed] [Google Scholar]
  5. Burkitt M. J., Bishop H. S., Milne L., Tsang S. Y., Provan G. J., Nobel C. S., Orrenius S., Slater A. F. Dithiocarbamate toxicity toward thymocytes involves their copper-catalyzed conversion to thiuram disulfides, which oxidize glutathione in a redox cycle without the release of reactive oxygen species. Arch Biochem Biophys. 1998 May 1;353(1):73–84. doi: 10.1006/abbi.1998.0618. [DOI] [PubMed] [Google Scholar]
  6. Cai J., Huang Z. Z., Lu S. C. Differential regulation of gamma-glutamylcysteine synthetase heavy and light subunit gene expression. Biochem J. 1997 Aug 15;326(Pt 1):167–172. doi: 10.1042/bj3260167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eaton D. L., Hamel D. M. Increase in gamma-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione. Toxicol Appl Pharmacol. 1994 May;126(1):145–149. doi: 10.1006/taap.1994.1100. [DOI] [PubMed] [Google Scholar]
  8. Galloway D. C., Blake D. G., Shepherd A. G., McLellan L. I. Regulation of human gamma-glutamylcysteine synthetase: co-ordinate induction of the catalytic and regulatory subunits in HepG2 cells. Biochem J. 1997 Nov 15;328(Pt 1):99–104. doi: 10.1042/bj3280099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  10. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  11. Hosni M., Meskini N., Prigent A. F., Anker G., Joulain C., el Habib R., Lagarde M. Diethyldithiocarbamate (ditiocarb sodium) effect on arachidonic acid metabolism in human mononuclear cells. Glutathione peroxidase-like activity. Biochem Pharmacol. 1992 Mar 17;43(6):1319–1329. doi: 10.1016/0006-2952(92)90509-h. [DOI] [PubMed] [Google Scholar]
  12. Ishikawa T., Bao J. J., Yamane Y., Akimaru K., Frindrich K., Wright C. D., Kuo M. T. Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells. J Biol Chem. 1996 Jun 21;271(25):14981–14988. doi: 10.1074/jbc.271.25.14981. [DOI] [PubMed] [Google Scholar]
  13. Iwanaga M., Mori K., Iida T., Urata Y., Matsuo T., Yasunaga A., Shibata S., Kondo T. Nuclear factor kappa B dependent induction of gamma glutamylcysteine synthetase by ionizing radiation in T98G human glioblastoma cells. Free Radic Biol Med. 1998 May;24(7-8):1256–1268. doi: 10.1016/s0891-5849(97)00443-7. [DOI] [PubMed] [Google Scholar]
  14. Li S., Thompson S. A., Kavanagh T. J., Woods J. S. Localization by in situ hybridization of gamma-glutamylcysteine synthetase mRNA expression in rat kidney following acute methylmercury treatment. Toxicol Appl Pharmacol. 1996 Nov;141(1):59–67. doi: 10.1006/taap.1996.0260. [DOI] [PubMed] [Google Scholar]
  15. Liu J., Shigenaga M. K., Yan L. J., Mori A., Ames B. N. Antioxidant activity of diethyldithiocarbamate. Free Radic Res. 1996 Jun;24(6):461–472. doi: 10.3109/10715769609088045. [DOI] [PubMed] [Google Scholar]
  16. Liu R. M., Hu H., Robison T. W., Forman H. J. Differential enhancement of gamma-glutamyl transpeptidase and gamma-glutamylcysteine synthetase by tert-butylhydroquinone in rat lung epithelial L2 cells. Am J Respir Cell Mol Biol. 1996 Feb;14(2):186–191. doi: 10.1165/ajrcmb.14.2.8630269. [DOI] [PubMed] [Google Scholar]
  17. Mancini M., Anderson B. O., Caldwell E., Sedghinasab M., Paty P. B., Hockenbery D. M. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol. 1997 Jul 28;138(2):449–469. doi: 10.1083/jcb.138.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mankhetkorn S., Abedinzadeh Z., Houee-Levin C. Antioxidant action of sodium diethyldithiocarbamate: reaction with hydrogen peroxide and superoxide radical. Free Radic Biol Med. 1994 Dec;17(6):517–527. doi: 10.1016/0891-5849(94)90091-4. [DOI] [PubMed] [Google Scholar]
  19. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  20. Meyer M., Schreck R., Baeuerle P. A. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 1993 May;12(5):2005–2015. doi: 10.1002/j.1460-2075.1993.tb05850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miles A. M., Bohle D. S., Glassbrenner P. A., Hansert B., Wink D. A., Grisham M. B. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem. 1996 Jan 5;271(1):40–47. doi: 10.1074/jbc.271.1.40. [DOI] [PubMed] [Google Scholar]
  22. Moinova H. R., Mulcahy R. T. An electrophile responsive element (EpRE) regulates beta-naphthoflavone induction of the human gamma-glutamylcysteine synthetase regulatory subunit gene. Constitutive expression is mediated by an adjacent AP-1 site. J Biol Chem. 1998 Jun 12;273(24):14683–14689. doi: 10.1074/jbc.273.24.14683. [DOI] [PubMed] [Google Scholar]
  23. Moldéus P., Cotgreave I. A. N-acetylcysteine. Methods Enzymol. 1994;234:482–492. doi: 10.1016/0076-6879(94)34119-2. [DOI] [PubMed] [Google Scholar]
  24. Morales A., García-Ruiz C., Miranda M., Marí M., Colell A., Ardite E., Fernández-Checa J. C. Tumor necrosis factor increases hepatocellular glutathione by transcriptional regulation of the heavy subunit chain of gamma-glutamylcysteine synthetase. J Biol Chem. 1997 Nov 28;272(48):30371–30379. doi: 10.1074/jbc.272.48.30371. [DOI] [PubMed] [Google Scholar]
  25. Morales A., Miranda M., Sanchez-Reyes A., Colell A., Biete A., Fernández-Checa J. C. Transcriptional regulation of the heavy subunit chain of gamma-glutamylcysteine synthetase by ionizing radiation. FEBS Lett. 1998 May 1;427(1):15–20. doi: 10.1016/s0014-5793(98)00381-0. [DOI] [PubMed] [Google Scholar]
  26. Mulcahy R. T., Wartman M. A., Bailey H. H., Gipp J. J. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem. 1997 Mar 14;272(11):7445–7454. doi: 10.1074/jbc.272.11.7445. [DOI] [PubMed] [Google Scholar]
  27. Neims A. H., Coffey D. S., Hellerman L. Interaction between tetraethylthiuram disulfide and the sulfhydryl groups of D-amino acid oxidase and of hemoglobin. J Biol Chem. 1966 Dec 25;241(24):5941–5948. [PubMed] [Google Scholar]
  28. Nobel C. I., Kimland M., Lind B., Orrenius S., Slater A. F. Dithiocarbamates induce apoptosis in thymocytes by raising the intracellular level of redox-active copper. J Biol Chem. 1995 Nov 3;270(44):26202–26208. doi: 10.1074/jbc.270.44.26202. [DOI] [PubMed] [Google Scholar]
  29. Nobel C. S., Burgess D. H., Zhivotovsky B., Burkitt M. J., Orrenius S., Slater A. F. Mechanism of dithiocarbamate inhibition of apoptosis: thiol oxidation by dithiocarbamate disulfides directly inhibits processing of the caspase-3 proenzyme. Chem Res Toxicol. 1997 Jun;10(6):636–643. doi: 10.1021/tx970006a. [DOI] [PubMed] [Google Scholar]
  30. Nobel C. S., Kimland M., Nicholson D. W., Orrenius S., Slater A. F. Disulfiram is a potent inhibitor of proteases of the caspase family. Chem Res Toxicol. 1997 Dec;10(12):1319–1324. doi: 10.1021/tx970131m. [DOI] [PubMed] [Google Scholar]
  31. Orrenius S., Nobel C. S., van den Dobbelsteen D. J., Burkitt M. J., Slater A. F. Dithiocarbamates and the redox regulation of cell death. Biochem Soc Trans. 1996 Nov;24(4):1032–1038. doi: 10.1042/bst0241032. [DOI] [PubMed] [Google Scholar]
  32. Rahman I., Bel A., Mulier B., Lawson M. F., Harrison D. J., Macnee W., Smith C. A. Transcriptional regulation of gamma-glutamylcysteine synthetase-heavy subunit by oxidants in human alveolar epithelial cells. Biochem Biophys Res Commun. 1996 Dec 24;229(3):832–837. doi: 10.1006/bbrc.1996.1888. [DOI] [PubMed] [Google Scholar]
  33. Royall J. A., Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys. 1993 May;302(2):348–355. doi: 10.1006/abbi.1993.1222. [DOI] [PubMed] [Google Scholar]
  34. STROMME J. H. Inhibition of hexokinase by disulfiram and diethyldithiocarbamate. Biochem Pharmacol. 1963 Feb;12:157–166. doi: 10.1016/0006-2952(63)90180-1. [DOI] [PubMed] [Google Scholar]
  35. Schreck R., Meier B., Männel D. N., Dröge W., Baeuerle P. A. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med. 1992 May 1;175(5):1181–1194. doi: 10.1084/jem.175.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shi M. M., Iwamoto T., Forman H. J. gamma-Glutamylcysteine synthetase and GSH increase in quinone-induced oxidative stress in BPAEC. Am J Physiol. 1994 Oct;267(4 Pt 1):L414–L421. doi: 10.1152/ajplung.1994.267.4.L414. [DOI] [PubMed] [Google Scholar]
  37. Shi M. M., Kugelman A., Iwamoto T., Tian L., Forman H. J. Quinone-induced oxidative stress elevates glutathione and induces gamma-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem. 1994 Oct 21;269(42):26512–26517. [PubMed] [Google Scholar]
  38. Stephen D. W., Rivers S. L., Jamieson D. J. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol. 1995 May;16(3):415–423. doi: 10.1111/j.1365-2958.1995.tb02407.x. [DOI] [PubMed] [Google Scholar]
  39. Tian L., Shi M. M., Forman H. J. Increased transcription of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. Arch Biochem Biophys. 1997 Jun 1;342(1):126–133. doi: 10.1006/abbi.1997.9997. [DOI] [PubMed] [Google Scholar]
  40. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  41. Trombetta L. D., Toulon M., Jamall I. S. Protective effects of glutathione on diethyldithiocarbamate (DDC) cytotoxicity: a possible mechanism. Toxicol Appl Pharmacol. 1988 Mar 30;93(1):154–164. doi: 10.1016/0041-008x(88)90035-x. [DOI] [PubMed] [Google Scholar]
  42. Urata Y., Yamamoto H., Goto S., Tsushima H., Akazawa S., Yamashita S., Nagataki S., Kondo T. Long exposure to high glucose concentration impairs the responsive expression of gamma-glutamylcysteine synthetase by interleukin-1beta and tumor necrosis factor-alpha in mouse endothelial cells. J Biol Chem. 1996 Jun 21;271(25):15146–15152. doi: 10.1074/jbc.271.25.15146. [DOI] [PubMed] [Google Scholar]
  43. Wild A. C., Gipp J. J., Mulcahy T. Overlapping antioxidant response element and PMA response element sequences mediate basal and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase catalytic subunit gene. Biochem J. 1998 Jun 1;332(Pt 2):373–381. doi: 10.1042/bj3320373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Woods J. S., Ellis M. E. Up-regulation of glutathione synthesis in rat kidney by methyl mercury. Relationship to mercury-induced oxidative stress. Biochem Pharmacol. 1995 Nov 9;50(10):1719–1724. doi: 10.1016/0006-2952(95)02075-6. [DOI] [PubMed] [Google Scholar]
  45. Wu H. H., Momand J. Pyrrolidine dithiocarbamate prevents p53 activation and promotes p53 cysteine residue oxidation. J Biol Chem. 1998 Jul 24;273(30):18898–18905. doi: 10.1074/jbc.273.30.18898. [DOI] [PubMed] [Google Scholar]
  46. Yao K., Godwin A. K., Ozols R. F., Hamilton T. C., O'Dwyer P. J. Variable baseline gamma-glutamylcysteine synthetase messenger RNA expression in peripheral mononuclear cells of cancer patients, and its induction by buthionine sulfoximine treatment. Cancer Res. 1993 Aug 15;53(16):3662–3666. [PubMed] [Google Scholar]
  47. Zanocco A. L., Pavez R., Videla L. A., Lissi E. A. Antioxidant capacity of diethyldithiocarbamate in a metal independent lipid peroxidative process. Free Radic Biol Med. 1989;7(2):151–156. doi: 10.1016/0891-5849(89)90006-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES