Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):687–694.

Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein.

R P da Silva 1, S Gordon 1
PMCID: PMC1220104  PMID: 10051440

Abstract

Macrosialin (mouse CD68), a macrophage-specific member of the lysosomal-associated membrane protein family, displays N-linked glycosylation and a heavily sialylated, mucin-like domain. We show that phagocytosis of zymosan by inflammatory peritoneal macrophages potently alters glycan processing of macrosialin in vitro. The phagocytic glycoform is not induced by other forms of endocytosis and depends on particle internalization. Zymosan uptake does not influence macrosialin protein synthesis, but increases the specific incorporation of D-[2-3H]mannose, D-[6-3H]galactose, N-acetyl-D-[1-3H]glucosamine and L-[5,6-3H]fucose by 2-15-fold. The phagocytic glycoform displays increased binding of agglutinins from peanut, Amaranthus caudatus and Galanthus nivalis, whereas binding of the sialic-acid-specific Maakia amurensis agglutinin is slightly reduced. Digestion by N-Glycanase abolishes the incorporation of [3H]mannose label and Galanthus nivalis agglutinin binding activity, but preserves the incorporation of galactose and N-acetylglucosamine and specific lectin binding. We also show that phagocytosis increases the complexity and length of O-linked chains. The data presented highlight the importance of differential glycosylation in the biology of macrosialin, phagosomes and macrophages in general.

Full Text

The Full Text of this article is available as a PDF (208.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amerongen A. V., Bolscher J. G., Veerman E. C. Salivary mucins: protective functions in relation to their diversity. Glycobiology. 1995 Dec;5(8):733–740. doi: 10.1093/glycob/5.8.733. [DOI] [PubMed] [Google Scholar]
  2. Ardman B., Sikorski M. A., Settles M., Staunton D. E. Human immunodeficiency virus type 1-infected individuals make autoantibodies that bind to CD43 on normal thymic lymphocytes. J Exp Med. 1990 Oct 1;172(4):1151–1158. doi: 10.1084/jem.172.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Axline S. G., Reaven E. P. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments. J Cell Biol. 1974 Sep;62(3):647–659. doi: 10.1083/jcb.62.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevilacqua M., Butcher E., Furie B., Furie B., Gallatin M., Gimbrone M., Harlan J., Kishimoto K., Lasky L., McEver R. Selectins: a family of adhesion receptors. Cell. 1991 Oct 18;67(2):233–233. doi: 10.1016/0092-8674(91)90174-w. [DOI] [PubMed] [Google Scholar]
  5. Braesch-Andersen S., Stamenkovic I. Sialylation of the B lymphocyte molecule CD22 by alpha 2,6-sialyltransferase is implicated in the regulation of CD22-mediated adhesion. J Biol Chem. 1994 Apr 22;269(16):11783–11786. [PubMed] [Google Scholar]
  6. Czop J. K., Kay J. Isolation and characterization of beta-glucan receptors on human mononuclear phagocytes. J Exp Med. 1991 Jun 1;173(6):1511–1520. doi: 10.1084/jem.173.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis W., Harrison P. T., Hutchinson M. J., Allen J. M. Two distinct regions of FC gamma RI initiate separate signalling pathways involved in endocytosis and phagocytosis. EMBO J. 1995 Feb 1;14(3):432–441. doi: 10.1002/j.1460-2075.1995.tb07019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ezekowitz R. A., Sastry K., Bailly P., Warner A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med. 1990 Dec 1;172(6):1785–1794. doi: 10.1084/jem.172.6.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldman R., Sharon N., Lotan R. A differential response elicited in macrophages on interaction with lectins. Exp Cell Res. 1976 May;99(2):408–422. doi: 10.1016/0014-4827(76)90598-x. [DOI] [PubMed] [Google Scholar]
  10. Greenberg S. Signal transduction of phagocytosis. Trends Cell Biol. 1995 Mar;5(3):93–99. doi: 10.1016/s0962-8924(00)88957-6. [DOI] [PubMed] [Google Scholar]
  11. Greis K. D., Hayes B. K., Comer F. I., Kirk M., Barnes S., Lowary T. L., Hart G. W. Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal Biochem. 1996 Feb 1;234(1):38–49. doi: 10.1006/abio.1996.0047. [DOI] [PubMed] [Google Scholar]
  12. Hall B. F., Webster P., Ma A. K., Joiner K. A., Andrews N. W. Desialylation of lysosomal membrane glycoproteins by Trypanosoma cruzi: a role for the surface neuraminidase in facilitating parasite entry into the host cell cytoplasm. J Exp Med. 1992 Aug 1;176(2):313–325. doi: 10.1084/jem.176.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holness C. L., Simmons D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993 Mar 15;81(6):1607–1613. [PubMed] [Google Scholar]
  14. Holness C. L., da Silva R. P., Fawcett J., Gordon S., Simmons D. L. Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J Biol Chem. 1993 May 5;268(13):9661–9666. [PubMed] [Google Scholar]
  15. Kozarsky K., Kingsley D., Krieger M. Use of a mutant cell line to study the kinetics and function of O-linked glycosylation of low density lipoprotein receptors. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4335–4339. doi: 10.1073/pnas.85.12.4335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kruskal B. A., Sastry K., Warner A. B., Mathieu C. E., Ezekowitz R. A. Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from the mannose receptor. J Exp Med. 1992 Dec 1;176(6):1673–1680. doi: 10.1084/jem.176.6.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kurosaka A., Nakajima H., Funakoshi I., Matsuyama M., Nagayo T., Yamashina I. Structures of the major oligosaccharides from a human rectal adenocarcinoma glycoprotein. J Biol Chem. 1983 Oct 10;258(19):11594–11598. [PubMed] [Google Scholar]
  18. Maddox D. E., Shibata S., Goldstein I. J. Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin. Proc Natl Acad Sci U S A. 1982 Jan;79(1):166–170. doi: 10.1073/pnas.79.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mercurio A. M., Robbins P. W. Activation of mouse peritoneal macrophages alters the structure and surface expression of protein-bound lactosaminoglycans. J Immunol. 1985 Aug;135(2):1305–1312. [PubMed] [Google Scholar]
  20. Park J. K., Rosenstein Y. J., Remold-O'Donnell E., Bierer B. E., Rosen F. S., Burakoff S. J. Enhancement of T-cell activation by the CD43 molecule whose expression is defective in Wiskott-Aldrich syndrome. Nature. 1991 Apr 25;350(6320):706–709. doi: 10.1038/350706a0. [DOI] [PubMed] [Google Scholar]
  21. Piller F., Le Deist F., Weinberg K. I., Parkman R., Fukuda M. Altered O-glycan synthesis in lymphocytes from patients with Wiskott-Aldrich syndrome. J Exp Med. 1991 Jun 1;173(6):1501–1510. doi: 10.1084/jem.173.6.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Piller F., Piller V., Fox R. I., Fukuda M. Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem. 1988 Oct 15;263(29):15146–15150. [PubMed] [Google Scholar]
  23. Pontow S. E., Kery V., Stahl P. D. Mannose receptor. Int Rev Cytol. 1992;137B:221–244. doi: 10.1016/s0074-7696(08)62606-6. [DOI] [PubMed] [Google Scholar]
  24. Rabinowitz S. S., Gordon S. Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli. J Exp Med. 1991 Oct 1;174(4):827–836. doi: 10.1084/jem.174.4.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rabinowitz S., Gordon S. Differential expression of membrane sialoglycoproteins in exudate and resident mouse peritoneal macrophages. J Cell Sci. 1989 Aug;93(Pt 4):623–630. doi: 10.1242/jcs.93.4.623. [DOI] [PubMed] [Google Scholar]
  26. Rabinowitz S., Horstmann H., Gordon S., Griffiths G. Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J Cell Biol. 1992 Jan;116(1):95–112. doi: 10.1083/jcb.116.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ramprasad M. P., Fischer W., Witztum J. L., Sambrano G. R., Quehenberger O., Steinberg D. The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9580–9584. doi: 10.1073/pnas.92.21.9580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saitoh O., Wang W. C., Lotan R., Fukuda M. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem. 1992 Mar 15;267(8):5700–5711. [PubMed] [Google Scholar]
  29. Smith M. J., Koch G. L. Differential expression of murine macrophage surface glycoprotein antigens in intracellular membranes. J Cell Sci. 1987 Feb;87(Pt 1):113–119. doi: 10.1242/jcs.87.1.113. [DOI] [PubMed] [Google Scholar]
  30. Van Velzen A. G., Da Silva R. P., Gordon S., Van Berkel T. J. Characterization of a receptor for oxidized low-density lipoproteins on rat Kupffer cells: similarity to macrosialin. Biochem J. 1997 Mar 1;322(Pt 2):411–415. doi: 10.1042/bj3220411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang W. C., Lee N., Aoki D., Fukuda M. N., Fukuda M. The poly-N-acetyllactosamines attached to lysosomal membrane glycoproteins are increased by the prolonged association with the Golgi complex. J Biol Chem. 1991 Dec 5;266(34):23185–23190. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES