Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):695–700.

Regulation of inducible nitric oxide synthase expression in beta cells by environmental factors: heavy metals.

W Eckhardt 1, K Bellmann 1, H Kolb 1
PMCID: PMC1220105  PMID: 10051441

Abstract

The expression of inducible NO synthase (iNOS) in pancreatic islet beta cells modulates endocrine cell functions and, at very high levels of NO production causes beta-cell death. We tested the hypothesis that environmental factors such as heavy-metal salts modulate iNOS expression in beta cells. A rat beta-cell line (insulinoma RINm5F) was cultured in the presence of low-dose interleukin (IL)-1beta for suboptimal induction of iNOS. PbCl2 (0. 1-10 microM) dose-dependently increased NO (measured as nitrite) formation (P<0.001). In contrast, HgCl2 suppressed nitrite production (0.1-10 microM, P<0.05). Measurements of iNOS activity by determining citrulline levels confirmed the potentiating effect of PbCl2 (P<0.05). There was a narrow time window of heavy-metal actions, ranging from -24 h (Hg2+) or -3 h (Pb2+) to +2 h, relative to the addition of IL-1beta. By semi-quantitative reverse transcriptase-PCR, enhanced levels of iNOS mRNA were found in the presence of Pb2+ (P<0.05) and decreased levels in the presence of Hg2+. The amount of iNOS protein as determined by Western blotting was increased in the presence of Pb2+. We conclude that Pb2+ upregulates and Hg2+ suppresses iNOS gene expression at the level of transcription, probably by acting on the signalling pathway. These observations may have important implications for understanding pathological effects of environmental factors on endocrine organ functions.

Full Text

The Full Text of this article is available as a PDF (146.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Abate J. A., Henry W. L., Jr Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J Immunol. 1991 Jul 1;147(1):144–148. [PubMed] [Google Scholar]
  2. Blazka M. E., Harry G. J., Luster M. I. Effect of lead acetate on nitrite production by murine brain endothelial cell cultures. Toxicol Appl Pharmacol. 1994 May;126(1):191–194. doi: 10.1006/taap.1994.1107. [DOI] [PubMed] [Google Scholar]
  3. Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin 10. J Exp Med. 1991 Dec 1;174(6):1549–1555. doi: 10.1084/jem.174.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bressler J., Forman S., Goldstein G. W. Phospholipid metabolism in neural microvascular endothelial cells after exposure to lead in vitro. Toxicol Appl Pharmacol. 1994 Jun;126(2):352–360. doi: 10.1006/taap.1994.1126. [DOI] [PubMed] [Google Scholar]
  5. Colasanti M., Persichini T., Menegazzi M., Mariotto S., Giordano E., Caldarera C. M., Sogos V., Lauro G. M., Suzuki H. Induction of nitric oxide synthase mRNA expression. Suppression by exogenous nitric oxide. J Biol Chem. 1995 Nov 10;270(45):26731–26733. doi: 10.1074/jbc.270.45.26731. [DOI] [PubMed] [Google Scholar]
  6. Comens P. G., Wolf B. A., Unanue E. R., Lacy P. E., McDaniel M. L. Interleukin 1 is potent modulator of insulin secretion from isolated rat islets of Langerhans. Diabetes. 1987 Aug;36(8):963–970. doi: 10.2337/diab.36.8.963. [DOI] [PubMed] [Google Scholar]
  7. Corbett J. A., McDaniel M. L. Does nitric oxide mediate autoimmune destruction of beta-cells? Possible therapeutic interventions in IDDM. Diabetes. 1992 Aug;41(8):897–903. doi: 10.2337/diab.41.8.897. [DOI] [PubMed] [Google Scholar]
  8. Corbett J. A., McDaniel M. L. Intraislet release of interleukin 1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide synthase. J Exp Med. 1995 Feb 1;181(2):559–568. doi: 10.1084/jem.181.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Corbett J. A., Sweetland M. A., Lancaster J. R., Jr, McDaniel M. L. A 1-hour pulse with IL-1 beta induces formation of nitric oxide and inhibits insulin secretion by rat islets of Langerhans: evidence for a tyrosine kinase signaling mechanism. FASEB J. 1993 Feb 1;7(2):369–374. doi: 10.1096/fasebj.7.2.8440413. [DOI] [PubMed] [Google Scholar]
  10. Corbett J. A., Wang J. L., Hughes J. H., Wolf B. A., Sweetland M. A., Lancaster J. R., Jr, McDaniel M. L. Nitric oxide and cyclic GMP formation induced by interleukin 1 beta in islets of Langerhans. Evidence for an effector role of nitric oxide in islet dysfunction. Biochem J. 1992 Oct 1;287(Pt 1):229–235. doi: 10.1042/bj2870229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eizirik D. L., Cagliero E., Björklund A., Welsh N. Interleukin-1 beta induces the expression of an isoform of nitric oxide synthase in insulin-producing cells, which is similar to that observed in activated macrophages. FEBS Lett. 1992 Aug 24;308(3):249–252. doi: 10.1016/0014-5793(92)81285-t. [DOI] [PubMed] [Google Scholar]
  12. Eizirik D. L., Cagliero E., Björklund A., Welsh N. Interleukin-1 beta induces the expression of an isoform of nitric oxide synthase in insulin-producing cells, which is similar to that observed in activated macrophages. FEBS Lett. 1992 Aug 24;308(3):249–252. doi: 10.1016/0014-5793(92)81285-t. [DOI] [PubMed] [Google Scholar]
  13. Eizirik D. L., Flodström M., Karlsen A. E., Welsh N. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia. 1996 Aug;39(8):875–890. doi: 10.1007/BF00403906. [DOI] [PubMed] [Google Scholar]
  14. Eizirik D. L., Sandler S. Human interleukin-1 beta induced stimulation of insulin release from rat pancreatic islets is accompanied by an increase in mitochondrial oxidative events. Diabetologia. 1989 Nov;32(11):769–773. doi: 10.1007/BF00264905. [DOI] [PubMed] [Google Scholar]
  15. Feuillard J., Gouy H., Bismuth G., Lee L. M., Debré P., Körner M. NF-kappa B activation by tumor necrosis factor alpha in the Jurkat T cell line is independent of protein kinase A, protein kinase C, and Ca(2+)-regulated kinases. Cytokine. 1991 May;3(3):257–265. doi: 10.1016/1043-4666(91)90025-9. [DOI] [PubMed] [Google Scholar]
  16. Gazdar A. F., Chick W. L., Oie H. K., Sims H. L., King D. L., Weir G. C., Lauris V. Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3519–3523. doi: 10.1073/pnas.77.6.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goering P. L. Lead-protein interactions as a basis for lead toxicity. Neurotoxicology. 1993 Summer-Fall;14(2-3):45–60. [PubMed] [Google Scholar]
  18. Goldstein G. W. Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology. 1993 Summer-Fall;14(2-3):97–101. [PubMed] [Google Scholar]
  19. Habib A., Bernard C., Lebret M., Creminon C., Esposito B., Tedgui A., Maclouf J. Regulation of the expression of cyclooxygenase-2 by nitric oxide in rat peritoneal macrophages. J Immunol. 1997 Apr 15;158(8):3845–3851. [PubMed] [Google Scholar]
  20. Haglund B., Ryckenberg K., Selinus O., Dahlquist G. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care. 1996 Aug;19(8):873–875. doi: 10.2337/diacare.19.8.873. [DOI] [PubMed] [Google Scholar]
  21. Hecker M., Sessa W. C., Harris H. J., Anggård E. E., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. doi: 10.1073/pnas.87.21.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kern M., Audesirk G. Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation. Toxicol Appl Pharmacol. 1995 Sep;134(1):111–123. doi: 10.1006/taap.1995.1174. [DOI] [PubMed] [Google Scholar]
  23. Kleemann R., Rothe H., Kolb-Bachofen V., Xie Q. W., Nathan C., Martin S., Kolb H. Transcription and translation of inducible nitric oxide synthase in the pancreas of prediabetic BB rats. FEBS Lett. 1993 Aug 9;328(1-2):9–12. doi: 10.1016/0014-5793(93)80954-s. [DOI] [PubMed] [Google Scholar]
  24. Kleinert H., Euchenhofer C., Ihrig-Biedert I., Förstermann U. In murine 3T3 fibroblasts, different second messenger pathways resulting in the induction of NO synthase II (iNOS) converge in the activation of transcription factor NF-kappaB. J Biol Chem. 1996 Mar 15;271(11):6039–6044. doi: 10.1074/jbc.271.11.6039. [DOI] [PubMed] [Google Scholar]
  25. Kolb H., Kolb-Bachofen V. Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today. 1992 May;13(5):157–160. doi: 10.1016/0167-5699(92)90118-Q. [DOI] [PubMed] [Google Scholar]
  26. Larsen C. M., Wadt K. A., Juhl L. F., Andersen H. U., Karlsen A. E., Su M. S., Seedorf K., Shapiro L., Dinarello C. A., Mandrup-Poulsen T. Interleukin-1beta-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Biol Chem. 1998 Jun 12;273(24):15294–15300. doi: 10.1074/jbc.273.24.15294. [DOI] [PubMed] [Google Scholar]
  27. Laterra J., Bressler J. P., Indurti R. R., Belloni-Olivi L., Goldstein G. W. Inhibition of astroglia-induced endothelial differentiation by inorganic lead: a role for protein kinase C. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10748–10752. doi: 10.1073/pnas.89.22.10748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liew F. Y. Regulation of lymphocyte functions by nitric oxide. Curr Opin Immunol. 1995 Jun;7(3):396–399. doi: 10.1016/0952-7915(95)80116-2. [DOI] [PubMed] [Google Scholar]
  29. Lison D., Raguzzi F., Lauwerys R. Comparison of the effects of auranofin, heavy metals and retinoids on protein kinase C in vitro and on a protein kinase C mediated response in macrophages. Pharmacol Toxicol. 1990 Sep;67(3):239–242. doi: 10.1111/j.1600-0773.1990.tb00820.x. [DOI] [PubMed] [Google Scholar]
  30. Long G. J., Rosen J. F., Schanne F. A. Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR. J Biol Chem. 1994 Jan 14;269(2):834–837. [PubMed] [Google Scholar]
  31. Mandrup-Poulsen T., Helqvist S., Mølvig J., Wogensen L. D., Nerup J. Cytokines as immune effector molecules in autoimmune endocrine diseases with special reference to insulin-dependent diabetes mellitus. Autoimmunity. 1989;4(3):191–234. doi: 10.3109/08916938909003049. [DOI] [PubMed] [Google Scholar]
  32. Markovac J., Goldstein G. W. Picomolar concentrations of lead stimulate brain protein kinase C. Nature. 1988 Jul 7;334(6177):71–73. doi: 10.1038/334071a0. [DOI] [PubMed] [Google Scholar]
  33. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  34. Muroi M., Suzuki T. Role of protein kinase A in LPS-induced activation of NF-kappa B proteins of a mouse macrophage-like cell line, J774. Cell Signal. 1993 May;5(3):289–298. doi: 10.1016/0898-6568(93)90019-i. [DOI] [PubMed] [Google Scholar]
  35. Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
  36. Niemann A., Björklund A., Eizirik D. L. Studies on the molecular regulation of the inducible form of nitric oxide synthase (iNOS) in insulin-producing cells. Mol Cell Endocrinol. 1994 Dec;106(1-2):151–155. doi: 10.1016/0303-7207(94)90197-x. [DOI] [PubMed] [Google Scholar]
  37. Nussler A. K., Billiar T. R., Liu Z. Z., Morris S. M., Jr Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem. 1994 Jan 14;269(2):1257–1261. [PubMed] [Google Scholar]
  38. Park S. K., Lin H. L., Murphy S. Nitric oxide limits transcriptional induction of nitric oxide synthase in CNS glial cells. Biochem Biophys Res Commun. 1994 Jun 15;201(2):762–768. doi: 10.1006/bbrc.1994.1766. [DOI] [PubMed] [Google Scholar]
  39. Peng H. B., Libby P., Liao J. K. Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem. 1995 Jun 9;270(23):14214–14219. doi: 10.1074/jbc.270.23.14214. [DOI] [PubMed] [Google Scholar]
  40. Rabinovitch A., Suarez-Pinzon W. L., Sorensen O., Bleackley R. C., Power R. F. IFN-gamma gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice. J Immunol. 1995 May 1;154(9):4874–4882. [PubMed] [Google Scholar]
  41. Rothe H., Burkart V., Faust A., Kolb H. Interleukin-12 gene expression is associated with rapid development of diabetes mellitus in non-obese diabetic mice. Diabetologia. 1996 Jan;39(1):119–122. doi: 10.1007/BF00400422. [DOI] [PubMed] [Google Scholar]
  42. Rothe H., Faust A., Schade U., Kleemann R., Bosse G., Hibino T., Martin S., Kolb H. Cyclophosphamide treatment of female non-obese diabetic mice causes enhanced expression of inducible nitric oxide synthase and interferon-gamma, but not of interleukin-4. Diabetologia. 1994 Nov;37(11):1154–1158. doi: 10.1007/BF00418380. [DOI] [PubMed] [Google Scholar]
  43. Rothe H., Hartmann B., Geerlings P., Kolb H. Interleukin-12 gene-expression of macrophages is regulated by nitric oxide. Biochem Biophys Res Commun. 1996 Jul 5;224(1):159–163. doi: 10.1006/bbrc.1996.1000. [DOI] [PubMed] [Google Scholar]
  44. Saldeen J., Welsh N. Interleukin-1 beta induced activation of NF-kappa B in insulin producing RINm5F cells is prevented by the protease inhibitor N alpha-p-tosyl-L-lysine chloromethylketone. Biochem Biophys Res Commun. 1994 Aug 30;203(1):149–155. doi: 10.1006/bbrc.1994.2161. [DOI] [PubMed] [Google Scholar]
  45. Simons T. J. Lead-calcium interactions in cellular lead toxicity. Neurotoxicology. 1993 Summer-Fall;14(2-3):77–85. [PubMed] [Google Scholar]
  46. Stacey K. J., Sweet M. J., Hume D. A. Macrophages ingest and are activated by bacterial DNA. J Immunol. 1996 Sep 1;157(5):2116–2122. [PubMed] [Google Scholar]
  47. Steiner L., Kröncke K., Fehsel K., Kolb-Bachofen V. Endothelial cells as cytotoxic effector cells: cytokine-activated rat islet endothelial cells lyse syngeneic islet cells via nitric oxide. Diabetologia. 1997 Feb;40(2):150–155. doi: 10.1007/s001250050656. [DOI] [PubMed] [Google Scholar]
  48. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stuehr D. J., Marletta M. A. Synthesis of nitrite and nitrate in murine macrophage cell lines. Cancer Res. 1987 Nov 1;47(21):5590–5594. [PubMed] [Google Scholar]
  50. Tian L., Lawrence D. A. Lead inhibits nitric oxide production in vitro by murine splenic macrophages. Toxicol Appl Pharmacol. 1995 May;132(1):156–163. doi: 10.1006/taap.1995.1096. [DOI] [PubMed] [Google Scholar]
  51. Tian L., Lawrence D. A. Metal-induced modulation of nitric oxide production in vitro by murine macrophages: lead, nickel, and cobalt utilize different mechanisms. Toxicol Appl Pharmacol. 1996 Dec;141(2):540–547. doi: 10.1006/taap.1996.0320. [DOI] [PubMed] [Google Scholar]
  52. Vincenti M. P., Burrell T. A., Taffet S. M. Regulation of NF-kappa B activity in murine macrophages: effect of bacterial lipopolysaccharide and phorbol ester. J Cell Physiol. 1992 Jan;150(1):204–213. doi: 10.1002/jcp.1041500127. [DOI] [PubMed] [Google Scholar]
  53. Vodovotz Y., Bogdan C., Paik J., Xie Q. W., Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med. 1993 Aug 1;178(2):605–613. doi: 10.1084/jem.178.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Welsh N. A role for tyrosine kinase activation in interleukin-1 beta induced nitric oxide production in the insulin producing cell line RINm-5F. Biosci Rep. 1994 Feb;14(1):43–50. doi: 10.1007/BF01901637. [DOI] [PubMed] [Google Scholar]
  55. Welsh N., Eizirik D. L., Bendtzen K., Sandler S. Interleukin-1 beta-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology. 1991 Dec;129(6):3167–3173. doi: 10.1210/endo-129-6-3167. [DOI] [PubMed] [Google Scholar]
  56. Welsh N. Interleukin-1 beta-induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF2 in the insulin-producing cell line RINm5F. J Biol Chem. 1996 Apr 5;271(14):8307–8312. doi: 10.1074/jbc.271.14.8307. [DOI] [PubMed] [Google Scholar]
  57. Wogensen L. D., Mandrup-Poulsen T., Markholst H., Mølvig J., Lernmark A., Holst J. J., Dinarello C. A., Nerup J. Interleukin-1 potentiates glucose stimulated insulin release in the isolated perfused pancreas. Acta Endocrinol (Copenh) 1988 Mar;117(3):302–306. doi: 10.1530/acta.0.1170302. [DOI] [PubMed] [Google Scholar]
  58. Wogensen L. D., Reimers J., Nerup J., Kolb-Bachofen V., Kröncke K. D., Almdal T., Mandrup-Poulsen T. Repetitive in vivo treatment with human recombinant interleukin-1 beta modifies beta-cell function in normal rats. Diabetologia. 1992 Apr;35(4):331–339. doi: 10.1007/BF00401200. [DOI] [PubMed] [Google Scholar]
  59. Zawalich W. S., Diaz V. A. Interleukin 1 inhibits insulin secretion from isolated perifused rat islets. Diabetes. 1986 Oct;35(10):1119–1123. doi: 10.2337/diab.35.10.1119. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES