Abstract
MET1 and MET8 mutants of Saccharomyces cerevisiae can be complemented by Salmonella typhimurium cysG, indicating that the genes are involved in the transformation of uroporphyrinogen III into sirohaem. In the present study, we have demonstrated complementation of defined cysG mutants of Sal. typhimurium and Escherichia coli, with either MET1 or MET8 cloned in tandem with Pseudomonas denitrificans cobA. The conclusion drawn from these experiments is that MET1 encodes the S-adenosyl-l-methionine uroporphyrinogen III transmethylase activity, and MET8 encodes the dehydrogenase and chelatase activities (all three functions are encoded by Sal. typhimurium and E. coli cysG). MET8 was further cloned into pET14b to allow expression of the protein with an N-terminal His-tag. After purification, the functions of the His-tagged Met8p were studied in vitro by assay with precorrin-2 in the presence of NAD+ and Co2+. The results demonstrated that Met8p acts as a dehydrogenase and chelatase in the biosynthesis of sirohaem. Moreover, despite the fact that S. cerevisiae does not make cobalamins de novo, we have shown also that MET8 is able to complement cobalamin cobaltochelatase mutants and have revealed a subtle difference in the early stages of the anaerobic cobalamin biosynthetic pathways between Sal. typhimurium and Bacillus megaterium.
Full Text
The Full Text of this article is available as a PDF (159.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alwan A. F., Mgbeje B. I., Jordan P. M. Purification and properties of uroporphyrinogen III synthase (co-synthase) from an overproducing recombinant strain of Escherichia coli K-12. Biochem J. 1989 Dec 1;264(2):397–402. doi: 10.1042/bj2640397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanche F., Debussche L., Thibaut D., Crouzet J., Cameron B. Purification and characterization of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Pseudomonas denitrificans. J Bacteriol. 1989 Aug;171(8):4222–4231. doi: 10.1128/jb.171.8.4222-4231.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crane B. R., Siegel L. M., Getzoff E. D. Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions. Science. 1995 Oct 6;270(5233):59–67. doi: 10.1126/science.270.5233.59. [DOI] [PubMed] [Google Scholar]
- Debussche L., Couder M., Thibaut D., Cameron B., Crouzet J., Blanche F. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol. 1992 Nov;174(22):7445–7451. doi: 10.1128/jb.174.22.7445-7451.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira G. C., Franco R., Lloyd S. G., Moura I., Moura J. J., Huynh B. H. Structure and function of ferrochelatase. J Bioenerg Biomembr. 1995 Apr;27(2):221–229. doi: 10.1007/BF02110037. [DOI] [PubMed] [Google Scholar]
- Griffiths L., Cole J. A. Lack of redox control of the anaerobically-induced nirB+ gene of Escherichia coli K-12. Arch Microbiol. 1987 May;147(4):364–369. doi: 10.1007/BF00406134. [DOI] [PubMed] [Google Scholar]
- Hansen J., Muldbjerg M., Chérest H., Surdin-Kerjan Y. Siroheme biosynthesis in Saccharomyces cerevisiae requires the products of both the MET1 and MET8 genes. FEBS Lett. 1997 Jan 13;401(1):20–24. doi: 10.1016/s0014-5793(96)01423-8. [DOI] [PubMed] [Google Scholar]
- Jordan P. M., Berry A. Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides. Biochem J. 1981 Apr 1;195(1):177–181. doi: 10.1042/bj1950177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jordan P. M., Thomas S. D., Warren M. J. Purification, crystallization and properties of porphobilinogen deaminase from a recombinant strain of Escherichia coli K12. Biochem J. 1988 Sep 1;254(2):427–435. doi: 10.1042/bj2540427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peakman T., Crouzet J., Mayaux J. F., Busby S., Mohan S., Harborne N., Wootton J., Nicolson R., Cole J. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem. 1990 Jul 31;191(2):315–323. doi: 10.1111/j.1432-1033.1990.tb19125.x. [DOI] [PubMed] [Google Scholar]
- Raux E., Lanois A., Levillayer F., Warren M. J., Brody E., Rambach A., Thermes C. Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli. J Bacteriol. 1996 Feb;178(3):753–767. doi: 10.1128/jb.178.3.753-767.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raux E., Lanois A., Warren M. J., Rambach A., Thermes C. Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem J. 1998 Oct 1;335(Pt 1):159–166. doi: 10.1042/bj3350159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raux E., Thermes C., Heathcote P., Rambach A., Warren M. J. A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J Bacteriol. 1997 May;179(10):3202–3212. doi: 10.1128/jb.179.10.3202-3212.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roessner C. A., Scott A. I. Fluorescence-based method for selection of recombinant plasmids. Biotechniques. 1995 Nov;19(5):760–764. [PubMed] [Google Scholar]
- Roessner C. A., Spencer J. B., Ozaki S., Min C., Atshaves B. P., Nayar P., Anousis N., Stolowich N. J., Holderman M. T., Scott A. I. Overexpression in Escherichia coli of 12 vitamin B12 biosynthetic enzymes. Protein Expr Purif. 1995 Apr;6(2):155–163. doi: 10.1006/prep.1995.1019. [DOI] [PubMed] [Google Scholar]
- Spencer J. B., Stolowich N. J., Roessner C. A., Scott A. I. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 1993 Nov 29;335(1):57–60. doi: 10.1016/0014-5793(93)80438-z. [DOI] [PubMed] [Google Scholar]
- Walker C. J., Willows R. D. Mechanism and regulation of Mg-chelatase. Biochem J. 1997 Oct 15;327(Pt 2):321–333. doi: 10.1042/bj3270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren M. J., Bolt E. L., Roessner C. A., Scott A. I., Spencer J. B., Woodcock S. C. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J. 1994 Sep 15;302(Pt 3):837–844. doi: 10.1042/bj3020837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren M. J., Scott A. I. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem Sci. 1990 Dec;15(12):486–491. doi: 10.1016/0968-0004(90)90304-t. [DOI] [PubMed] [Google Scholar]
- Woodcock S. C., Raux E., Levillayer F., Thermes C., Rambach A., Warren M. J. Effect of mutations in the transmethylase and dehydrogenase/chelatase domains of sirohaem synthase (CysG) on sirohaem and cobalamin biosynthesis. Biochem J. 1998 Feb 15;330(Pt 1):121–129. doi: 10.1042/bj3300121. [DOI] [PMC free article] [PubMed] [Google Scholar]