Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):709–715.

SNAP-23 participates in SNARE complex assembly in rat adipose cells.

J F St-Denis 1, J P Cabaniols 1, S W Cushman 1, P A Roche 1
PMCID: PMC1220107  PMID: 10051443

Abstract

SNARE proteins are required for vesicle docking and fusion in eukaryotic cells in processes as diverse as homotypic membrane fusion and synaptic vesicle exocytosis [SNARE stands for SNAP receptor, where SNAP is soluble NSF attachment protein]. The SNARE proteins syntaxin 4 and vesicle-associated membrane protein (VAMP) 2/3 also participate in the insulin-stimulated translocation of GLUT4 from intracellular vesicles to the plasma membrane in adipose cells. We now report the molecular cloning and characterization of rat SNAP-23, a ubiquitously expressed homologue of the essential neuronal SNARE protein SNAP-25 (synaptosomal-associated protein of 25 kDa). Rat SNAP-23 is 86% and 98% identical respectively to human and mouse SNAP-23. Southern blot analysis reveals that the rat, mouse and human SNAP-23 genes encode species-specific isoforms of the same protein. Co-immunoprecipitation of syntaxin 4 and SNAP-23 shows association of these two proteins in rat adipose cell plasma membranes, and insulin stimulation does not alter the SNAP-23/syntaxin 4 complex. In addition, we demonstrate for the first time the participation of SNAP-23, along with syntaxin 4 and VAMP2/3, in the formation of 20S SNARE complexes prepared using rat adipose cell membranes and recombinant alpha-SNAP and NSF proteins. The stoichiometry of the SNARE complexes formed is essentially identical using membranes from either unstimulated or insulin-stimulated adipose cells. These data demonstrate that rat SNAP-23 associates with syntaxin 4 before insulin stimulation and is present in the SNARE complexes known to mediate the translocation of GLUT4 from intracellular vesicles to the plasma membrane of rat adipose cells.

Full Text

The Full Text of this article is available as a PDF (319.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki S., Tamori Y., Kawanishi M., Shinoda H., Masugi J., Mori H., Niki T., Okazawa H., Kubota T., Kasuga M. Inhibition of the binding of SNAP-23 to syntaxin 4 by Munc18c. Biochem Biophys Res Commun. 1997 May 8;234(1):257–262. doi: 10.1006/bbrc.1997.6560. [DOI] [PubMed] [Google Scholar]
  2. Boyd R. S., Duggan M. J., Shone C. C., Foster K. A. The effect of botulinum neurotoxins on the release of insulin from the insulinoma cell lines HIT-15 and RINm5F. J Biol Chem. 1995 Aug 4;270(31):18216–18218. doi: 10.1074/jbc.270.31.18216. [DOI] [PubMed] [Google Scholar]
  3. Cain C. C., Trimble W. S., Lienhard G. E. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J Biol Chem. 1992 Jun 15;267(17):11681–11684. [PubMed] [Google Scholar]
  4. Chapman E. R., An S., Barton N., Jahn R. SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J Biol Chem. 1994 Nov 4;269(44):27427–27432. [PubMed] [Google Scholar]
  5. Cheatham B., Volchuk A., Kahn C. R., Wang L., Rhodes C. J., Klip A. Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15169–15173. doi: 10.1073/pnas.93.26.15169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Foster L. J., Yeung B., Mohtashami M., Ross K., Trimble W. S., Klip A. Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochemistry. 1998 Aug 4;37(31):11089–11096. doi: 10.1021/bi980253t. [DOI] [PubMed] [Google Scholar]
  8. Galli T., Zahraoui A., Vaidyanathan V. V., Raposo G., Tian J. M., Karin M., Niemann H., Louvard D. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol Biol Cell. 1998 Jun;9(6):1437–1448. doi: 10.1091/mbc.9.6.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hanson P. I., Otto H., Barton N., Jahn R. The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin. J Biol Chem. 1995 Jul 14;270(28):16955–16961. doi: 10.1074/jbc.270.28.16955. [DOI] [PubMed] [Google Scholar]
  10. Hay J. C., Scheller R. H. SNAREs and NSF in targeted membrane fusion. Curr Opin Cell Biol. 1997 Aug;9(4):505–512. doi: 10.1016/s0955-0674(97)80026-9. [DOI] [PubMed] [Google Scholar]
  11. Hayashi T., McMahon H., Yamasaki S., Binz T., Hata Y., Südhof T. C., Niemann H. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 1994 Nov 1;13(21):5051–5061. doi: 10.1002/j.1460-2075.1994.tb06834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayashi T., Yamasaki S., Nauenburg S., Binz T., Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 1995 May 15;14(10):2317–2325. doi: 10.1002/j.1460-2075.1995.tb07226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holman G. D., Cushman S. W. Subcellular localization and trafficking of the GLUT4 glucose transporter isoform in insulin-responsive cells. Bioessays. 1994 Oct;16(10):753–759. doi: 10.1002/bies.950161010. [DOI] [PubMed] [Google Scholar]
  14. Leung S. M., Chen D., DasGupta B. R., Whiteheart S. W., Apodaca G. SNAP-23 requirement for transferrin recycling in Streptolysin-O-permeabilized Madin-Darby canine kidney cells. J Biol Chem. 1998 Jul 10;273(28):17732–17741. doi: 10.1074/jbc.273.28.17732. [DOI] [PubMed] [Google Scholar]
  15. Low S. H., Roche P. A., Anderson H. A., van Ijzendoorn S. C., Zhang M., Mostov K. E., Weimbs T. Targeting of SNAP-23 and SNAP-25 in polarized epithelial cells. J Biol Chem. 1998 Feb 6;273(6):3422–3430. doi: 10.1074/jbc.273.6.3422. [DOI] [PubMed] [Google Scholar]
  16. Macaulay S. L., Hewish D. R., Gough K. H., Stoichevska V., MacPherson S. F., Jagadish M., Ward C. W. Functional studies in 3T3L1 cells support a role for SNARE proteins in insulin stimulation of GLUT4 translocation. Biochem J. 1997 May 15;324(Pt 1):217–224. doi: 10.1042/bj3240217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin T. F. Stages of regulated exocytosis. Trends Cell Biol. 1997 Jul;7(7):271–276. doi: 10.1016/S0962-8924(97)01060-X. [DOI] [PubMed] [Google Scholar]
  18. Mastick C. C., Falick A. L. Association of N-ethylmaleimide sensitive fusion (NSF) protein and soluble NSF attachment proteins-alpha and -gamma with glucose transporter-4-containing vesicles in primary rat adipocytes. Endocrinology. 1997 Jun;138(6):2391–2397. doi: 10.1210/endo.138.6.5166. [DOI] [PubMed] [Google Scholar]
  19. Niemann H., Blasi J., Jahn R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol. 1994 May;4(5):179–185. doi: 10.1016/0962-8924(94)90203-8. [DOI] [PubMed] [Google Scholar]
  20. Olson A. L., Knight J. B., Pessin J. E. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol. 1997 May;17(5):2425–2435. doi: 10.1128/mcb.17.5.2425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pfeffer S. R. Transport vesicle docking: SNAREs and associates. Annu Rev Cell Dev Biol. 1996;12:441–461. doi: 10.1146/annurev.cellbio.12.1.441. [DOI] [PubMed] [Google Scholar]
  22. Ravichandran V., Chawla A., Roche P. A. Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem. 1996 Jun 7;271(23):13300–13303. doi: 10.1074/jbc.271.23.13300. [DOI] [PubMed] [Google Scholar]
  23. Rea S., Martin L. B., McIntosh S., Macaulay S. L., Ramsdale T., Baldini G., James D. E. Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J Biol Chem. 1998 Jul 24;273(30):18784–18792. doi: 10.1074/jbc.273.30.18784. [DOI] [PubMed] [Google Scholar]
  24. Roth D., Burgoyne R. D. SNAP-25 is present in a SNARE complex in adrenal chromaffin cells. FEBS Lett. 1994 Sep 5;351(2):207–210. doi: 10.1016/0014-5793(94)00833-7. [DOI] [PubMed] [Google Scholar]
  25. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  26. Sadoul K., Berger A., Niemann H., Weller U., Roche P. A., Klip A., Trimble W. S., Regazzi R., Catsicas S., Halban P. A. SNAP-23 is not cleaved by botulinum neurotoxin E and can replace SNAP-25 in the process of insulin secretion. J Biol Chem. 1997 Dec 26;272(52):33023–33027. doi: 10.1074/jbc.272.52.33023. [DOI] [PubMed] [Google Scholar]
  27. Sadoul K., Lang J., Montecucco C., Weller U., Regazzi R., Catsicas S., Wollheim C. B., Halban P. A. SNAP-25 is expressed in islets of Langerhans and is involved in insulin release. J Cell Biol. 1995 Mar;128(6):1019–1028. doi: 10.1083/jcb.128.6.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simpson I. A., Cushman S. W. Hormonal regulation of mammalian glucose transport. Annu Rev Biochem. 1986;55:1059–1089. doi: 10.1146/annurev.bi.55.070186.005211. [DOI] [PubMed] [Google Scholar]
  29. Simpson I. A., Yver D. R., Hissin P. J., Wardzala L. J., Karnieli E., Salans L. B., Cushman S. W. Insulin-stimulated translocation of glucose transporters in the isolated rat adipose cells: characterization of subcellular fractions. Biochim Biophys Acta. 1983 Dec 19;763(4):393–407. doi: 10.1016/0167-4889(83)90101-5. [DOI] [PubMed] [Google Scholar]
  30. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  31. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  32. Tamori Y., Hashiramoto M., Araki S., Kamata Y., Takahashi M., Kozaki S., Kasuga M. Cleavage of vesicle-associated membrane protein (VAMP)-2 and cellubrevin on GLUT4-containing vesicles inhibits the translocation of GLUT4 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 1996 Mar 27;220(3):740–745. doi: 10.1006/bbrc.1996.0474. [DOI] [PubMed] [Google Scholar]
  33. Timmers K. I., Clark A. E., Omatsu-Kanbe M., Whiteheart S. W., Bennett M. K., Holman G. D., Cushman S. W. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein. Biochem J. 1996 Dec 1;320(Pt 2):429–436. doi: 10.1042/bj3200429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ungermann C., Wickner W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J. 1998 Jun 15;17(12):3269–3276. doi: 10.1093/emboj/17.12.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Veit M., Söllner T. H., Rothman J. E. Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett. 1996 Apr 29;385(1-2):119–123. doi: 10.1016/0014-5793(96)00362-6. [DOI] [PubMed] [Google Scholar]
  36. Wang G., Witkin J. W., Hao G., Bankaitis V. A., Scherer P. E., Baldini G. Syndet is a novel SNAP-25 related protein expressed in many tissues. J Cell Sci. 1997 Feb;110(Pt 4):505–513. doi: 10.1242/jcs.110.4.505. [DOI] [PubMed] [Google Scholar]
  37. Weber T., Zemelman B. V., McNew J. A., Westermann B., Gmachl M., Parlati F., Söllner T. H., Rothman J. E. SNAREpins: minimal machinery for membrane fusion. Cell. 1998 Mar 20;92(6):759–772. doi: 10.1016/s0092-8674(00)81404-x. [DOI] [PubMed] [Google Scholar]
  38. Wong P. P., Daneman N., Volchuk A., Lassam N., Wilson M. C., Klip A., Trimble W. S. Tissue distribution of SNAP-23 and its subcellular localization in 3T3-L1 cells. Biochem Biophys Res Commun. 1997 Jan 3;230(1):64–68. doi: 10.1006/bbrc.1996.5884. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES