Abstract
Human serum albumin (HSA) reduced the phospholipid hydroperoxide, 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-l-3-phosphatidylcholine (PLPC-OOH) to the corresponding hydroxy-derivative with a high apparent affinity (Km=9. 23+/-0.95 microM). Removal of bound lipid during purification increased this activity. At physiological concentration, HSA reduced the phospholipid hydroperoxide in the absence of a cofactor. However, in the presence of a cofactor (reductant), the rate of the reaction was increased. All of the major aminothiols in plasma could act as reductants, the best being the most abundant, cysteine (Km=600+/-80 microM). For every nanomole of PLPC-OOH reduced by HSA, 1.26 nmol of cystine was formed, indicating a reaction stoichiometry of 1 mol PLPC-OOH to 2 mol cysteine. We used chemical modification to determine which amino acid residues on HSA were responsible for the activity. Oxidation of thiol group(s) by N-ethylmaleimide led to a reduction in the rate of activity, whereas reduction of thiols by either dithiothreitol or the angiotensin-converting enzyme inhibitor, captopril, increased the activity. Both N-ethylmaleimide-modified HSA and dithiothreitol-treated HSA exhibited increased apparent affinities for PLPC-OOH. For a range of preparations of albumin with different modifications, the activity on PLPC-OOH was dependent on the amount of free thiol groups on the albumin (correlation coefficient=0.91). Patients with lowered albumin concentrations after septic shock showed lowered total plasma thiol concentrations and decreased phospholipid hydroperoxide cysteine peroxidase (PHCPx) activities. These results therefore show for the first time that HSA exhibits PHCPx activity, and that the majority of the activity depends on the presence of reduced thiol group(s) on the albumin.
Full Text
The Full Text of this article is available as a PDF (123.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N. Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res Commun. 1989;7(3-6):121–128. doi: 10.3109/10715768909087933. [DOI] [PubMed] [Google Scholar]
- Andersson L. O. The heterogeneity of bovine serum albumin. Biochim Biophys Acta. 1966 Mar 28;117(1):115–133. doi: 10.1016/0304-4165(66)90159-0. [DOI] [PubMed] [Google Scholar]
- Bao Y., Chambers S. J., Williamson G. Direct separation of hydroperoxy- and hydroxy-phosphatidylcholine derivatives: application to the assay of phospholipid hydroperoxide glutathione peroxidase. Anal Biochem. 1995 Jan 1;224(1):395–399. doi: 10.1006/abio.1995.1056. [DOI] [PubMed] [Google Scholar]
- Bao Y., Williamson G. Metabolism of hydroperoxy-phospholipids in human hepatoma HepG2 cells. J Lipid Res. 1996 Nov;37(11):2351–2360. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cha M. K., Kim I. H. Glutathione-linked thiol peroxidase activity of human serum albumin: a possible antioxidant role of serum albumin in blood plasma. Biochem Biophys Res Commun. 1996 May 15;222(2):619–625. doi: 10.1006/bbrc.1996.0793. [DOI] [PubMed] [Google Scholar]
- Christodoulou J., Sadler P. J., Tucker A. 1H NMR of albumin in human blood plasma: drug binding and redox reactions at Cys34. FEBS Lett. 1995 Nov 27;376(1-2):1–5. doi: 10.1016/0014-5793(95)01231-2. [DOI] [PubMed] [Google Scholar]
- Cornell C. N., Chang R., Kaplan L. J. The environment of the sulfhydryl group in human plasma albumin as determined by spin labeling. Arch Biochem Biophys. 1981 Jun;209(1):1–6. doi: 10.1016/0003-9861(81)90250-2. [DOI] [PubMed] [Google Scholar]
- Dahlberg E., Snochowski M., Gustafsson J. A. Removal of hydrophobic compounds from biological fluids by a simple method. Anal Biochem. 1980 Aug;106(2):380–388. doi: 10.1016/0003-2697(80)90537-0. [DOI] [PubMed] [Google Scholar]
- Doumas B. T., Watson W. A., Biggs H. G. Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta. 1971 Jan;31(1):87–96. doi: 10.1016/0009-8981(71)90365-2. [DOI] [PubMed] [Google Scholar]
- Ellman G., Lysko H. A precise method for the determination of whole blood and plasma sulfhydryl groups. Anal Biochem. 1979 Feb;93(1):98–102. [PubMed] [Google Scholar]
- Fariss M. W., Reed D. J. High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives. Methods Enzymol. 1987;143:101–109. doi: 10.1016/0076-6879(87)43018-8. [DOI] [PubMed] [Google Scholar]
- Frei B., Stocker R., Ames B. N. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9748–9752. doi: 10.1073/pnas.85.24.9748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge J. M. Antioxidant properties of the proteins caeruloplasmin, albumin and transferrin. A study of their activity in serum and synovial fluid from patients with rheumatoid arthritis. Biochim Biophys Acta. 1986 Jan 30;869(2):119–127. doi: 10.1016/0167-4838(86)90286-4. [DOI] [PubMed] [Google Scholar]
- Halliwell B. Albumin--an important extracellular antioxidant? Biochem Pharmacol. 1988 Feb 15;37(4):569–571. doi: 10.1016/0006-2952(88)90126-8. [DOI] [PubMed] [Google Scholar]
- Halliwell B. How to characterize a biological antioxidant. Free Radic Res Commun. 1990;9(1):1–32. doi: 10.3109/10715769009148569. [DOI] [PubMed] [Google Scholar]
- Harrison I., Littlejohn D., Fell G. S. Distribution of selenium in human blood plasma and serum. Analyst. 1996 Feb;121(2):189–194. doi: 10.1039/an9962100189. [DOI] [PubMed] [Google Scholar]
- Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
- He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358(6383):209–215. doi: 10.1038/358209a0. [DOI] [PubMed] [Google Scholar]
- Hurst R., Bao Y., Jemth P., Mannervik B., Williamson G. Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases. Biochem J. 1998 May 15;332(Pt 1):97–100. doi: 10.1042/bj3320097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadota K., Yui Y., Hattori R., Murohara Y., Kawai C. Decreased sulfhydryl groups of serum albumin in coronary artery disease. Jpn Circ J. 1991 Oct;55(10):937–941. doi: 10.1253/jcj.55.937. [DOI] [PubMed] [Google Scholar]
- Maiorino M., Gregolin C., Ursini F. Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol. 1990;186:448–457. doi: 10.1016/0076-6879(90)86139-m. [DOI] [PubMed] [Google Scholar]
- Mashima R., Yamamoto Y., Yoshimura S. Reduction of phosphatidylcholine hydroperoxide by apolipoprotein A-I: purification of the hydroperoxide-reducing proteins from human blood plasma. J Lipid Res. 1998 Jun;39(6):1133–1140. [PubMed] [Google Scholar]
- Miyazawa T., Yasuda K., Fujimoto K., Kaneda T. Presence of phosphatidylcholine hydroperoxide in human plasma. J Biochem. 1988 May;103(5):744–746. doi: 10.1093/oxfordjournals.jbchem.a122339. [DOI] [PubMed] [Google Scholar]
- Narazaki R., Maruyama T., Otagiri M. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Biochim Biophys Acta. 1997 Apr 4;1338(2):275–281. doi: 10.1016/s0167-4838(96)00221-x. [DOI] [PubMed] [Google Scholar]
- Ondetti M. A., Rubin B., Cushman D. W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science. 1977 Apr 22;196(4288):441–444. doi: 10.1126/science.191908. [DOI] [PubMed] [Google Scholar]
- Peters T., Jr Serum albumin. Adv Protein Chem. 1985;37:161–245. doi: 10.1016/s0065-3233(08)60065-0. [DOI] [PubMed] [Google Scholar]
- RODKEY F. L. DIRECT SPECTROPHOTOMETRIC DETERMINATION OF ALBUMIN IN HUMAN SERUM. Clin Chem. 1965 Apr;11:478–487. [PubMed] [Google Scholar]
- Slater T. F. Free-radical mechanisms in tissue injury. Biochem J. 1984 Aug 15;222(1):1–15. doi: 10.1042/bj2220001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocker R., Ames B. N. Potential role of conjugated bilirubin and copper in the metabolism of lipid peroxides in bile. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8130–8134. doi: 10.1073/pnas.84.22.8130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocker R., Glazer A. N., Ames B. N. Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5918–5922. doi: 10.1073/pnas.84.16.5918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987 Feb 27;235(4792):1043–1046. doi: 10.1126/science.3029864. [DOI] [PubMed] [Google Scholar]
- Totter J. R. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1763–1767. doi: 10.1073/pnas.77.4.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueland P. M., Mansoor M. A., Guttormsen A. B., Müller F., Aukrust P., Refsum H., Svardal A. M. Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status--a possible element of the extracellular antioxidant defense system. J Nutr. 1996 Apr;126(4 Suppl):1281S–1284S. doi: 10.1093/jn/126.suppl_4.1281S. [DOI] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
