Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):753–760.

Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis.

B Saint-Joanis 1, H Souchon 1, M Wilming 1, K Johnsson 1, P M Alzari 1, S T Cole 1
PMCID: PMC1220113  PMID: 10051449

Abstract

A series of mutants bearing single amino acid substitutions often encountered in the catalase/peroxidase, KatG, from isoniazid-resistant isolates of Mycobacterium tuberculosis has been produced by site-directed mutagenesis. The resultant enzymes were overexpressed, purified and characterized. Replacing Cys-20 by Ser abolished disulphide-bridge formation, but did not affect either dimerization of the enzyme or catalysis. The substitution of Thr-275, which is probably involved in electron transfer from the haem, by proline resulted in a highly unstable enzyme with insignificant enzyme activities. The most commonly occurring substitution in drug-resistant clinical isolates is the replacement of Ser-315 by Thr; this lowered catalase and peroxidase activities by 50% and caused a significant decrease in the KatG-mediated inhibition of the activity of the NADH-dependent enoyl-[acyl-carrier protein] reductase, InhA, in vitro. The ability of this enzyme to produce free radicals from isoniazid was severely impaired, as judged by its loss of NitroBlue Tetrazolium reduction activity. Replacement of Leu-587 by Pro resulted in marked instability of KatG, indicating that the C-terminal domain is also important for structural and functional integrity.

Full Text

The Full Text of this article is available as a PDF (228.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Dessen A., Quémard A., Blanchard J. S., Jacobs W. R., Jr, Sacchettini J. C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995 Mar 17;267(5204):1638–1641. doi: 10.1126/science.7886450. [DOI] [PubMed] [Google Scholar]
  4. Heym B., Alzari P. M., Honoré N., Cole S. T. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol. 1995 Jan;15(2):235–245. doi: 10.1111/j.1365-2958.1995.tb02238.x. [DOI] [PubMed] [Google Scholar]
  5. Heym B., Cole S. T. Isolation and characterization of isoniazid-resistant mutants of Mycobacterium smegmatis and M. aurum. Res Microbiol. 1992 Sep;143(7):721–730. doi: 10.1016/0923-2508(92)90067-x. [DOI] [PubMed] [Google Scholar]
  6. Heym B., Honoré N., Truffot-Pernot C., Banerjee A., Schurra C., Jacobs W. R., Jr, van Embden J. D., Grosset J. H., Cole S. T. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994 Jul 30;344(8918):293–298. doi: 10.1016/s0140-6736(94)91338-2. [DOI] [PubMed] [Google Scholar]
  7. Heym B., Stavropoulos E., Honoré N., Domenech P., Saint-Joanis B., Wilson T. M., Collins D. M., Colston M. J., Cole S. T. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun. 1997 Apr;65(4):1395–1401. doi: 10.1128/iai.65.4.1395-1401.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heym B., Zhang Y., Poulet S., Young D., Cole S. T. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol. 1993 Jul;175(13):4255–4259. doi: 10.1128/jb.175.13.4255-4259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hillar A., Loewen P. C. Comparison of isoniazid oxidation catalyzed by bacterial catalase-peroxidases and horseradish peroxidase. Arch Biochem Biophys. 1995 Nov 10;323(2):438–446. doi: 10.1006/abbi.1995.0065. [DOI] [PubMed] [Google Scholar]
  10. Johnsson K., Froland W. A., Schultz P. G. Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis. J Biol Chem. 1997 Jan 31;272(5):2834–2840. doi: 10.1074/jbc.272.5.2834. [DOI] [PubMed] [Google Scholar]
  11. Marcinkeviciene J. A., Magliozzo R. S., Blanchard J. S. Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation. J Biol Chem. 1995 Sep 22;270(38):22290–22295. doi: 10.1074/jbc.270.38.22290. [DOI] [PubMed] [Google Scholar]
  12. Mdluli K., Sherman D. R., Hickey M. J., Kreiswirth B. N., Morris S., Stover C. K., Barry C. E., 3rd Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis. J Infect Dis. 1996 Nov;174(5):1085–1090. doi: 10.1093/infdis/174.5.1085. [DOI] [PubMed] [Google Scholar]
  13. Mdluli K., Slayden R. A., Zhu Y., Ramaswamy S., Pan X., Mead D., Crane D. D., Musser J. M., Barry C. E., 3rd Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science. 1998 Jun 5;280(5369):1607–1610. doi: 10.1126/science.280.5369.1607. [DOI] [PubMed] [Google Scholar]
  14. Musser J. M. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995 Oct;8(4):496–514. doi: 10.1128/cmr.8.4.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Musser J. M., Kapur V., Williams D. L., Kreiswirth B. N., van Soolingen D., van Embden J. D. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis. 1996 Jan;173(1):196–202. doi: 10.1093/infdis/173.1.196. [DOI] [PubMed] [Google Scholar]
  16. Quémard A., Sacchettini J. C., Dessen A., Vilcheze C., Bittman R., Jacobs W. R., Jr, Blanchard J. S. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry. 1995 Jul 4;34(26):8235–8241. doi: 10.1021/bi00026a004. [DOI] [PubMed] [Google Scholar]
  17. Rouse D. A., DeVito J. A., Li Z., Byer H., Morris S. L. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol. 1996 Nov;22(3):583–592. doi: 10.1046/j.1365-2958.1996.00133.x. [DOI] [PubMed] [Google Scholar]
  18. Rouse D. A., Li Z., Bai G. H., Morris S. L. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995 Nov;39(11):2472–2477. doi: 10.1128/aac.39.11.2472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rozwarski D. A., Grant G. A., Barton D. H., Jacobs W. R., Jr, Sacchettini J. C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science. 1998 Jan 2;279(5347):98–102. doi: 10.1126/science.279.5347.98. [DOI] [PubMed] [Google Scholar]
  20. Shoeb H. A., Bowman B. U., Jr, Ottolenghi A. C., Merola A. J. Evidence for the generation of active oxygen by isoniazid treatment of extracts of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1985 Mar;27(3):404–407. doi: 10.1128/aac.27.3.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Telenti A., Honoré N., Bernasconi C., March J., Ortega A., Heym B., Takiff H. E., Cole S. T. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol. 1997 Mar;35(3):719–723. doi: 10.1128/jcm.35.3.719-723.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang J. M., Mauro M., Edwards S. L., Oatley S. J., Fishel L. A., Ashford V. A., Xuong N. H., Kraut J. X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis. Biochemistry. 1990 Aug 7;29(31):7160–7173. doi: 10.1021/bi00483a003. [DOI] [PubMed] [Google Scholar]
  23. Welinder K. G. Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta. 1991 Nov 15;1080(3):215–220. doi: 10.1016/0167-4838(91)90004-j. [DOI] [PubMed] [Google Scholar]
  24. Wengenack N. L., Uhl J. R., St Amand A. L., Tomlinson A. J., Benson L. M., Naylor S., Kline B. C., Cockerill F. R., 3rd, Rusnak F. Recombinant Mycobacterium tuberculosis KatG(S315T) is a competent catalase-peroxidase with reduced activity toward isoniazid. J Infect Dis. 1997 Sep;176(3):722–727. doi: 10.1086/514096. [DOI] [PubMed] [Google Scholar]
  25. Wilson T. M., de Lisle G. W., Collins D. M. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol. 1995 Mar;15(6):1009–1015. doi: 10.1111/j.1365-2958.1995.tb02276.x. [DOI] [PubMed] [Google Scholar]
  26. Zamocky M., Herzog C., Nykyri L. M., Koller F. Site-directed mutagenesis of the lower parts of the major substrate channel of yeast catalase A leads to highly increased peroxidatic activity. FEBS Lett. 1995 Jul 3;367(3):241–245. doi: 10.1016/0014-5793(95)00568-t. [DOI] [PubMed] [Google Scholar]
  27. Zhang Y., Garbe T., Young D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol. 1993 May;8(3):521–524. doi: 10.1111/j.1365-2958.1993.tb01596.x. [DOI] [PubMed] [Google Scholar]
  28. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES