Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):761–768.

Subcellullar localization, developmental expression and characterization of a liver triacylglycerol hydrolase.

R Lehner 1, Z Cui 1, D E Vance 1
PMCID: PMC1220114  PMID: 10051450

Abstract

The mechanism and enzymic activities responsible for the lipolysis of stored cytosolic triacylglycerol in liver and its re-esterification remain obscure. A candidate enzyme for lipolysis, a microsomal triacylglycerol hydrolase (TGH), was recently purified to homogeneity from pig liver and its kinetic properties were determined [Lehner and Verger (1997) Biochemistry 36, 1861-1868]. We have characterized the enzyme with regard to its species distribution, subcellular localization, developmental expression and reaction with lipase inhibitors. The hydrolase co-sediments with endoplasmic reticulum elements and is associated with isolated liver fat droplets. Immunocytochemical studies localize TGH exclusively to liver cells surrounding capillaries. Both TGH mRNA and protein are expressed in rats during weaning. The enzyme covalently binds tetrahydrolipstatin, an inhibitor of lipases and of triacylglycerol hydrolysis. The enzyme is absent from liver-derived cell lines (HepG2 and McArdle RH7777) known to be impaired in very-low-density lipoprotein (VLDL) assembly and secretion. The localization and developmental expression of TGH are consistent with a proposed role in triacylglycerol hydrolysis and with the proposal that some of the resynthesized triacylglycerol is utilized for VLDL secretion.

Full Text

The Full Text of this article is available as a PDF (396.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-On H., Roheim P. S., Stein O., Stein Y. Contribution of floating fat triglyceride and of lecithin towards formation of secretory triglyceride in perfused rat liver. Biochim Biophys Acta. 1971 Oct 5;248(1):1–11. doi: 10.1016/0005-2760(71)90068-3. [DOI] [PubMed] [Google Scholar]
  2. Blanchette-Mackie E. J., Dwyer N. K., Barber T., Coxey R. A., Takeda T., Rondinone C. M., Theodorakis J. L., Greenberg A. S., Londos C. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res. 1995 Jun;36(6):1211–1226. [PubMed] [Google Scholar]
  3. Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
  4. Coleman R. A., Haynes E. B., Sand T. M., Davis R. A. Developmental coordinate expression of triacylglycerol and small molecular weight apoB synthesis and secretion by rat hepatocytes. J Lipid Res. 1988 Jan;29(1):33–42. [PubMed] [Google Scholar]
  5. Croze E. M., Morré D. J. Isolation of plasma membrane, golgi apparatus, and endoplasmic reticulum fractions from single homogenates of mouse liver. J Cell Physiol. 1984 Apr;119(1):46–57. doi: 10.1002/jcp.1041190109. [DOI] [PubMed] [Google Scholar]
  6. Cruise J. L., Knechtle S. J., Bollinger R. R., Kuhn C., Michalopoulos G. Alpha 1-adrenergic effects and liver regeneration. Hepatology. 1987 Nov-Dec;7(6):1189–1194. doi: 10.1002/hep.1840070604. [DOI] [PubMed] [Google Scholar]
  7. Cui Z., Shen Y. J., Vance D. E. Inverse correlation between expression of phosphatidylethanolamine N-methyltransferase-2 and growth rate of perinatal rat livers. Biochim Biophys Acta. 1997 May 17;1346(1):10–16. doi: 10.1016/s0005-2760(97)00012-x. [DOI] [PubMed] [Google Scholar]
  8. Cui Z., Vance J. E., Chen M. H., Voelker D. R., Vance D. E. Cloning and expression of a novel phosphatidylethanolamine N-methyltransferase. A specific biochemical and cytological marker for a unique membrane fraction in rat liver. J Biol Chem. 1993 Aug 5;268(22):16655–16663. [PubMed] [Google Scholar]
  9. Curtin N. J., Snell K. Enzymic retrodifferentiation during hepatocarcinogenesis and liver regeneration in rats in vivo. Br J Cancer. 1983 Oct;48(4):495–505. doi: 10.1038/bjc.1983.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Egan J. J., Greenberg A. S., Chang M. K., Wek S. A., Moos M. C., Jr, Londos C. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8537–8541. doi: 10.1073/pnas.89.18.8537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. Fast D. G., Vance D. E. Nascent VLDL phospholipid composition is altered when phosphatidylcholine biosynthesis is inhibited: evidence for a novel mechanism that regulates VLDL secretion. Biochim Biophys Acta. 1995 Sep 14;1258(2):159–168. doi: 10.1016/0005-2760(95)00116-t. [DOI] [PubMed] [Google Scholar]
  13. Francone O. L., Kalopissis A. D., Griffaton G. Contribution of cytoplasmic storage triacylglycerol to VLDL-triacylglycerol in isolated rat hepatocytes. Biochim Biophys Acta. 1989 Mar 14;1002(1):28–36. doi: 10.1016/0005-2760(89)90060-x. [DOI] [PubMed] [Google Scholar]
  14. Gibbons G. F., Bartlett S. M., Sparks C. E., Sparks J. D. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem J. 1992 Nov 1;287(Pt 3):749–753. doi: 10.1042/bj2870749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gibbons G. F., Khurana R., Odwell A., Seelaender M. C. Lipid balance in HepG2 cells: active synthesis and impaired mobilization. J Lipid Res. 1994 Oct;35(10):1801–1808. [PubMed] [Google Scholar]
  16. Gibbons G. F., Wiggins D. Intracellular triacylglycerol lipase: its role in the assembly of hepatic very-low-density lipoprotein (VLDL). Adv Enzyme Regul. 1995;35:179–198. doi: 10.1016/0065-2571(94)00006-o. [DOI] [PubMed] [Google Scholar]
  17. Gibbons G. F., Wiggins D. The enzymology of hepatic very-low-density lipoprotein assembly. Biochem Soc Trans. 1995 Aug;23(3):495–500. doi: 10.1042/bst0230495. [DOI] [PubMed] [Google Scholar]
  18. Guidoni A., Benkouka F., De Caro J., Rovery M. Characterization of the serine reacting with diethyl p-nitrophenyl phosphate in porcine pancreatic lipase. Biochim Biophys Acta. 1981 Jul 24;660(1):148–150. doi: 10.1016/0005-2744(81)90120-0. [DOI] [PubMed] [Google Scholar]
  19. Hadváry P., Sidler W., Meister W., Vetter W., Wolfer H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J Biol Chem. 1991 Feb 5;266(4):2021–2027. [PubMed] [Google Scholar]
  20. Hermier D., Hales P., Brindley D. N. Effects of the lipase inhibitors, Triton WR-1339 and tetrahydrolipstatin, on the synthesis and secretion of lipids by rat hepatocytes. FEBS Lett. 1991 Jul 29;286(1-2):186–188. doi: 10.1016/0014-5793(91)80970-e. [DOI] [PubMed] [Google Scholar]
  21. Lankester D. L., Brown A. M., Zammit V. A. Use of cytosolic triacylglycerol hydrolysis products and of exogenous fatty acid for the synthesis of triacylglycerol secreted by cultured rat hepatocytes. J Lipid Res. 1998 Sep;39(9):1889–1895. [PubMed] [Google Scholar]
  22. Leffert H. L., Koch K. S., Moran T., Rubalcava B. Hormonal control of rat liver regeneration. Gastroenterology. 1979 Jun;76(6):1470–1482. [PubMed] [Google Scholar]
  23. Lehner R., Kuksis A. Triacylglycerol synthesis by an sn-1,2(2,3)-diacylglycerol transacylase from rat intestinal microsomes. J Biol Chem. 1993 Apr 25;268(12):8781–8786. [PubMed] [Google Scholar]
  24. Lehner R., Verger R. Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry. 1997 Feb 18;36(7):1861–1868. doi: 10.1021/bi962186d. [DOI] [PubMed] [Google Scholar]
  25. Mooney R. A., Lane M. D. Formation and turnover of triglyceride-rich vesicles in the chick liver cell. Effects of cAMP and carnitine on triglyceride mobilization and conversion to ketones. J Biol Chem. 1981 Nov 25;256(22):11724–11733. [PubMed] [Google Scholar]
  26. Moreau H., Moulin A., Gargouri Y., Noël J. P., Verger R. Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry. 1991 Jan 29;30(4):1037–1041. doi: 10.1021/bi00218a022. [DOI] [PubMed] [Google Scholar]
  27. Ridgway N. D., Vance D. E. Purification of phosphatidylethanolamine N-methyltransferase from rat liver. J Biol Chem. 1987 Dec 15;262(35):17231–17239. [PubMed] [Google Scholar]
  28. Rusiñol A. E., Cui Z., Chen M. H., Vance J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem. 1994 Nov 4;269(44):27494–27502. [PubMed] [Google Scholar]
  29. Sabugal R., Julve J., Llobera M., Peinado-Onsurbe J. Decrease in the expression of hepatic lipase activity following partial hepatectomy. Biochim Biophys Acta. 1996 Aug 16;1302(3):193–198. doi: 10.1016/0005-2760(96)00061-6. [DOI] [PubMed] [Google Scholar]
  30. Sabugal R., Robert M. Q., Julve J., Auwerx J., Llobera M., Peinado-Onsurbe J. Hepatic regeneration induces changes in lipoprotein lipase activity in several tissues and its re-expression in the liver. Biochem J. 1996 Sep 1;318(Pt 2):597–602. doi: 10.1042/bj3180597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Skinner M. K., Griswold M. D. Fluorographic detection of radioactivity in polyacrylamide gels with 2,5-diphenyloxazole in acetic acid and its comparison with existing procedures. Biochem J. 1983 Jan 1;209(1):281–284. doi: 10.1042/bj2090281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sparks J. D., Sparks C. E. Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):9–32. doi: 10.1016/0005-2760(94)90088-4. [DOI] [PubMed] [Google Scholar]
  33. Uriel J. Retrodifferentiation and the fetal patterns of gene expression in cancer. Adv Cancer Res. 1979;29:127–174. doi: 10.1016/s0065-230x(08)60847-7. [DOI] [PubMed] [Google Scholar]
  34. Vance J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 1990 May 5;265(13):7248–7256. [PubMed] [Google Scholar]
  35. Vance J. E., Vance D. E. Does rat liver Golgi have the capacity to synthesize phospholipids for lipoprotein secretion? J Biol Chem. 1988 Apr 25;263(12):5898–5909. [PubMed] [Google Scholar]
  36. Verkade H. J., Fast D. G., Rusiñol A. E., Scraba D. G., Vance D. E. Impaired biosynthesis of phosphatidylcholine causes a decrease in the number of very low density lipoprotein particles in the Golgi but not in the endoplasmic reticulum of rat liver. J Biol Chem. 1993 Nov 25;268(33):24990–24996. [PubMed] [Google Scholar]
  37. Vermeulen P. S., Lingrell S., Yao Z., Vance D. E. Phosphatidylcholine biosynthesis is required for secretion of truncated apolipoprotein Bs from McArdle RH7777 cells only when a neutral lipid core is formed. J Lipid Res. 1997 Mar;38(3):447–458. [PubMed] [Google Scholar]
  38. Wiggins D., Gibbons G. F. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas. Biochem J. 1992 Jun 1;284(Pt 2):457–462. doi: 10.1042/bj2840457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wu X., Shang A., Jiang H., Ginsberg H. N. Low rates of apoB secretion from HepG2 cells result from reduced delivery of newly synthesized triglyceride to a "secretion-coupled" pool. J Lipid Res. 1996 Jun;37(6):1198–1206. [PubMed] [Google Scholar]
  40. Yang L. Y., Kuksis A. Apparent convergence (at 2-monoacylglycerol level) of phosphatidic acid and 2-monoacylglycerol pathways of synthesis of chylomicron triacylglycerols. J Lipid Res. 1991 Jul;32(7):1173–1186. [PubMed] [Google Scholar]
  41. Yang L. Y., Kuksis A., Myher J. J., Steiner G. Origin of triacylglycerol moiety of plasma very low density lipoproteins in the rat: structural studies. J Lipid Res. 1995 Jan;36(1):125–136. [PubMed] [Google Scholar]
  42. Yao Z. M., Vance D. E. Reduction in VLDL, but not HDL, in plasma of rats deficient in choline. Biochem Cell Biol. 1990 Feb;68(2):552–558. doi: 10.1139/o90-079. [DOI] [PubMed] [Google Scholar]
  43. Yao Z. M., Vance D. E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem. 1988 Feb 25;263(6):2998–3004. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES