Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):769–776.

Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether.

R A Zoeller 1, A C Lake 1, N Nagan 1, D P Gaposchkin 1, M A Legner 1, W Lieberthal 1
PMCID: PMC1220115  PMID: 10051451

Abstract

Exposure of plasmalogen-deficient variants of the murine cell line RAW 264.7 to short-term (0-100 min) treatment with electron transport inhibitors antimycin A or cyanide (chemical hypoxia) resulted in a more rapid loss of viability than in the parent strain. Results suggested that plasmalogen-deficient cells were more sensitive to reactive oxygen species (ROS) generated during chemical hypoxia; the mutants could be rescued from chemical hypoxia by using the antioxidant Trolox, an alpha-tocopherol analogue, and they were more sensitive to ROS generation by plumbagin or by rose bengal treatment coupled with irradiation. In addition, the use of buffers containing 2H2O greatly enhanced the cytotoxic effect of chemical hypoxia, suggesting the involvement of singlet oxygen. We used the unique enzymic deficiencies displayed by the mutants to differentially restore either plasmenylethanolamine (the major plasmalogen species normally found in this cell line) or its biosynthetic precursor, plasmanylethanolamine. Restoration of plasmenylethanolamine, which contains the vinyl ether, resulted in wild-type-like resistance to chemical hypoxia and ROS generators, whereas increasing levels of its precursor, which bears the saturated ether, had no effect on cell survival. These findings identify the vinyl ether double bond as a crucial element in cellular protection under these conditions and support the hypothesis that plasmalogens, through the vinyl ether, act as antioxidants to protect cells against ROS. These phospholipids might protect cells from ROS-mediated damage during events such as chemical hypoxia.

Full Text

The Full Text of this article is available as a PDF (220.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Borle A. B., Barsic M. Chemical hypoxia increases cytosolic Ca2+ and oxygen free radical formation. Cell Calcium. 1995 Apr;17(4):307–315. doi: 10.1016/0143-4160(95)90077-2. [DOI] [PubMed] [Google Scholar]
  3. Corey E. J., Mehrotra M. M., Khan A. U. Antiarthritic gold compounds effectively quench electronically excited singlet oxygen. Science. 1987 Apr 3;236(4797):68–69. doi: 10.1126/science.3563489. [DOI] [PubMed] [Google Scholar]
  4. Dawson T. L., Gores G. J., Nieminen A. L., Herman B., Lemasters J. J. Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am J Physiol. 1993 Apr;264(4 Pt 1):C961–C967. doi: 10.1152/ajpcell.1993.264.4.C961. [DOI] [PubMed] [Google Scholar]
  5. Engelmann B., Bräutigam C., Thiery J. Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1235–1242. doi: 10.1006/bbrc.1994.2595. [DOI] [PubMed] [Google Scholar]
  6. Felde R., Spiteller G. Plasmalogen oxidation in human serum lipoproteins. Chem Phys Lipids. 1995 Jun 19;76(2):259–267. doi: 10.1016/0009-3084(94)02448-e. [DOI] [PubMed] [Google Scholar]
  7. Floreani M., Forlin A., Pandolfo L., Petrone M., Bellin S. Mechanisms of plumbagin action on guinea pig isolated atria. J Pharmacol Exp Ther. 1996 Aug;278(2):763–770. [PubMed] [Google Scholar]
  8. Ford D. A., Hazen S. L., Saffitz J. E., Gross R. W. The rapid and reversible activation of a calcium-independent plasmalogen-selective phospholipase A2 during myocardial ischemia. J Clin Invest. 1991 Jul;88(1):331–335. doi: 10.1172/JCI115296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gross R. W. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry. 1984 Jan 3;23(1):158–165. doi: 10.1021/bi00296a026. [DOI] [PubMed] [Google Scholar]
  10. Hagar H., Ueda N., Shah S. V. Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Am J Physiol. 1996 Jul;271(1 Pt 2):F209–F215. doi: 10.1152/ajprenal.1996.271.1.F209. [DOI] [PubMed] [Google Scholar]
  11. Han X. L., Gross R. W. Alterations in membrane dynamics elicited by amphiphilic compounds are augmented in plasmenylcholine bilayers. Biochim Biophys Acta. 1991 Oct 14;1069(1):37–45. doi: 10.1016/0005-2736(91)90101-d. [DOI] [PubMed] [Google Scholar]
  12. Harris S. I., Balaban R. S., Barrett L., Mandel L. J. Mitochondrial respiratory capacity and Na+- and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell. J Biol Chem. 1981 Oct 25;256(20):10319–10328. [PubMed] [Google Scholar]
  13. Jürgens G., Fell A., Ledinski G., Chen Q., Paltauf F. Delay of copper-catalyzed oxidation of low density lipoprotein by in vitro enrichment with choline or ethanolamine plasmalogens. Chem Phys Lipids. 1995 Aug 1;77(1):25–31. doi: 10.1016/0009-3084(95)02451-n. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lévesque A., Paquet A., Pagé M. Measurement of tumor necrosis factor activity by flow cytometry. Cytometry. 1995 Jun 1;20(2):181–184. doi: 10.1002/cyto.990200211. [DOI] [PubMed] [Google Scholar]
  16. Mao Y., Zang L., Shi X. Singlet oxygen generation in the superoxide reaction. Biochem Mol Biol Int. 1995 May;36(1):227–232. [PubMed] [Google Scholar]
  17. Morand O. H., Zoeller R. A., Raetz C. R. Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J Biol Chem. 1988 Aug 15;263(23):11597–11606. [PubMed] [Google Scholar]
  18. Moser A. B., Rasmussen M., Naidu S., Watkins P. A., McGuinness M., Hajra A. K., Chen G., Raymond G., Liu A., Gordon D. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J Pediatr. 1995 Jul;127(1):13–22. doi: 10.1016/s0022-3476(95)70250-4. [DOI] [PubMed] [Google Scholar]
  19. Mueller H. W., O'Flaherty J. T., Greene D. G., Samuel M. P., Wykle R. L. 1-O-alkyl-linked glycerophospholipids of human neutrophils: distribution of arachidonate and other acyl residues in the ether-linked and diacyl species. J Lipid Res. 1984 Apr;25(4):383–388. [PubMed] [Google Scholar]
  20. Nilsson R., Kearns D. R. A remarkable deuterium effect on the rate of photosensitized oxidation of alcohol dehydrogenase and trypsin. Photochem Photobiol. 1973 Jan;17(1):65–68. doi: 10.1111/j.1751-1097.1973.tb06333.x. [DOI] [PubMed] [Google Scholar]
  21. Pombo C. M., Bonventre J. V., Avruch J., Woodgett J. R., Kyriakis J. M., Force T. The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J Biol Chem. 1994 Oct 21;269(42):26546–26551. [PubMed] [Google Scholar]
  22. Portilla D., Creer M. H. Plasmalogen phospholipid hydrolysis during hypoxic injury of rabbit proximal tubules. Kidney Int. 1995 Apr;47(4):1087–1094. doi: 10.1038/ki.1995.155. [DOI] [PubMed] [Google Scholar]
  23. Portilla D., Shah S. V., Lehman P. A., Creer M. H. Role of cytosolic calcium-independent plasmalogen-selective phospholipase A2 in hypoxic injury to rabbit proximal tubules. J Clin Invest. 1994 Apr;93(4):1609–1615. doi: 10.1172/JCI117141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pryor W. A. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;48:657–667. doi: 10.1146/annurev.ph.48.030186.003301. [DOI] [PubMed] [Google Scholar]
  25. Raschke W. C., Baird S., Ralph P., Nakoinz I. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell. 1978 Sep;15(1):261–267. doi: 10.1016/0092-8674(78)90101-0. [DOI] [PubMed] [Google Scholar]
  26. Reiss D., Beyer K., Engelmann B. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J. 1997 May 1;323(Pt 3):807–814. doi: 10.1042/bj3230807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rubinstein J. D., Lesnefsky E. J., Byler R. M., Fennessey P. V., Horwitz L. D. Trolox C, a lipid-soluble membrane protective agent, attenuates myocardial injury from ischemia and reperfusion. Free Radic Biol Med. 1992 Dec;13(6):627–634. doi: 10.1016/0891-5849(92)90037-h. [DOI] [PubMed] [Google Scholar]
  28. Sheridan A. M., Schwartz J. H., Kroshian V. M., Tercyak A. M., Laraia J., Masino S., Lieberthal W. Renal mouse proximal tubular cells are more susceptible than MDCK cells to chemical anoxia. Am J Physiol. 1993 Sep;265(3 Pt 2):F342–F350. doi: 10.1152/ajprenal.1993.265.3.F342. [DOI] [PubMed] [Google Scholar]
  29. Snyder F. Alkylglycerol phosphotransferase. Methods Enzymol. 1992;209:211–215. doi: 10.1016/0076-6879(92)09025-x. [DOI] [PubMed] [Google Scholar]
  30. Snyder F., Blank M. L., Wykle R. L. The enzymic synthesis of ethanolamine plasmalogens. J Biol Chem. 1971 Jun 10;246(11):3639–3645. [PubMed] [Google Scholar]
  31. Strässle M., Stark G. Photodynamic inactivation of an ion channel: gramicidin A. Photochem Photobiol. 1992 Mar;55(3):461–463. doi: 10.1111/j.1751-1097.1992.tb04262.x. [DOI] [PubMed] [Google Scholar]
  32. Sugiura T., Onuma Y., Sekiguchi N., Waku K. Ether phospholipids in guinea pig polymorphonuclear leukocytes and macrophages. Occurrence of high levels of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine. Biochim Biophys Acta. 1982 Sep 14;712(3):515–522. [PubMed] [Google Scholar]
  33. Wanders R. J., Schumacher H., Heikoop J., Schutgens R. B., Tager J. M. Human dihydroxyacetonephosphate acyltransferase deficiency: a new peroxisomal disorder. J Inherit Metab Dis. 1992;15(3):389–391. doi: 10.1007/BF02435984. [DOI] [PubMed] [Google Scholar]
  34. Wei H., Cai Q., Rahn R., Zhang X. Singlet oxygen involvement in ultraviolet (254 nm) radiation-induced formation of 8-hydroxy-deoxyguanosine in DNA. Free Radic Biol Med. 1997;23(1):148–154. doi: 10.1016/s0891-5849(96)00526-6. [DOI] [PubMed] [Google Scholar]
  35. Zoeller R. A., Morand O. H., Raetz C. R. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem. 1988 Aug 15;263(23):11590–11596. [PubMed] [Google Scholar]
  36. Zoeller R. A., Raetz C. R. Strategies for isolating somatic cell mutants defective in lipid biosynthesis. Methods Enzymol. 1992;209:34–51. doi: 10.1016/0076-6879(92)09006-o. [DOI] [PubMed] [Google Scholar]
  37. Zoeller R. A., Rangaswamy S., Herscovitz H., Rizzo W. B., Hajra A. K., Das A. K., Moser H. W., Moser A., Lazarow P. B., Santos M. J. Mutants in a macrophage-like cell line are defective in plasmalogen biosynthesis, but contain functional peroxisomes. J Biol Chem. 1992 Apr 25;267(12):8299–8306. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES