Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):783–791.

AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target.

D M Muoio 1, K Seefeld 1, L A Witters 1, R A Coleman 1
PMCID: PMC1220117  PMID: 10051453

Abstract

AMP-activated kinase (AMPK) is activated in response to metabolic stresses that deplete cellular ATP, and in both liver and skeletal muscle, activated AMPK stimulates fatty acid oxidation. To determine whether AMPK might reciprocally regulate glycerolipid synthesis, we studied liver and skeletal-muscle lipid metabolism in the presence of 5-amino-4-imidazolecarboxamide (AICA) riboside, a cell-permeable compound whose phosphorylated metabolite activates AMPK. Adding AICA riboside to cultured rat hepatocytes for 3 h decreased [14C]oleate and [3H]glycerol incorporation into triacylglycerol (TAG) by 50% and 38% respectively, and decreased oleate labelling of diacylglycerol by 60%. In isolated mouse soleus, a highly oxidative muscle, incubation with AICA riboside for 90 min decreased [14C]oleate incorporation into TAG by 37% and increased 14CO2 production by 48%. When insulin was present, [14C]oleate oxidation was 49% lower and [14C]oleate incorporation into TAG was 62% higher than under basal conditions. AICA riboside blocked insulin's antioxidative and lipogenic effects, increasing fatty acid oxidation by 78% and decreasing labelled TAG 43%. Similar results on fatty acid oxidation and acylglycerol synthesis were observed in C2C12 myoblasts, and in differentiated C2C12 myotubes, AICA riboside also inhibited the hydrolysis of intracellular TAG. These data suggest that AICA riboside might inhibit sn-glycerol-3-phosphate acyltransferase (GPAT), which catalyses the committed step in the pathway of glycerolipid biosynthesis. Incubating rat hepatocytes with AICA riboside for both 15 and 30 min decreased mitochondrial GPAT activity 22-34% without affecting microsomal GPAT, diacylglycerol acyltransferase or acyl-CoA synthetase activities. Finally, purified recombinant AMPKalpha1 and AMPKalpha2 inhibited hepatic mitochondrial GPAT in a time-and ATP-dependent manner. These data show that AMPK reciprocally regulates acyl-CoA channelling towards beta-oxidation and away from glycerolipid biosynthesis, and provide strong evidence that AMPK phosphorylates and inhibits mitochondrial GPAT.

Full Text

The Full Text of this article is available as a PDF (195.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Banis R. J., Tove S. B. Solubilization of a long chain fatty acyl-CoA synthetase from chicken adipose tissue microsomes. Biochim Biophys Acta. 1974 May 29;348(2):210–220. doi: 10.1016/0005-2760(74)90232-x. [DOI] [PubMed] [Google Scholar]
  3. Bates E. J., Topping D. L., Sooranna S. P., Saggerson D., Mayes P. A. Acute effects of insulin on glycerol phosphate acyl transferase activity, ketogenesis and serum free fatty acid concentration in perfused rat liver. FEBS Lett. 1977 Dec 15;84(2):225–228. doi: 10.1016/0014-5793(77)80693-5. [DOI] [PubMed] [Google Scholar]
  4. Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487. doi: 10.1146/annurev.bi.49.070180.002331. [DOI] [PubMed] [Google Scholar]
  5. Bennett A. M., Tonks N. K. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science. 1997 Nov 14;278(5341):1288–1291. doi: 10.1126/science.278.5341.1288. [DOI] [PubMed] [Google Scholar]
  6. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carling D., Hardie D. G. The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta. 1989 Jun 15;1012(1):81–86. doi: 10.1016/0167-4889(89)90014-1. [DOI] [PubMed] [Google Scholar]
  8. Chang Y. Y., Kennedy E. P. Biosynthesis of phosphatidyl glycerophosphate in Escherichia coli. J Lipid Res. 1967 Sep;8(5):447–455. [PubMed] [Google Scholar]
  9. Coleman R. A., Haynes E. B. Selective changes in microsomal enzymes of triacylglycerol and phosphatidylcholine synthesis in fetal and postnatal rat liver. Induction of microsomal sn-glycerol 3-phosphate and dihydroxyacetonephosphate acyltransferase activities. J Biol Chem. 1983 Jan 10;258(1):450–456. [PubMed] [Google Scholar]
  10. Coleman R., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J Biol Chem. 1976 Aug 10;251(15):4537–4543. [PubMed] [Google Scholar]
  11. Corton J. M., Gillespie J. G., Hawley S. A., Hardie D. G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995 Apr 15;229(2):558–565. doi: 10.1111/j.1432-1033.1995.tb20498.x. [DOI] [PubMed] [Google Scholar]
  12. Davies S. P., Carling D., Hardie D. G. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989 Dec 8;186(1-2):123–128. doi: 10.1111/j.1432-1033.1989.tb15185.x. [DOI] [PubMed] [Google Scholar]
  13. Dyck J. R., Gao G., Widmer J., Stapleton D., Fernandez C. S., Kemp B. E., Witters L. A. Regulation of 5'-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits. J Biol Chem. 1996 Jul 26;271(30):17798–17803. doi: 10.1074/jbc.271.30.17798. [DOI] [PubMed] [Google Scholar]
  14. Fleischer S., McIntyre J. O., Vidal J. C. Large-scale preparation of rat liver mitochondria in high yield. Methods Enzymol. 1979;55:32–39. doi: 10.1016/0076-6879(79)55005-8. [DOI] [PubMed] [Google Scholar]
  15. Glatz J. F., Veerkamp J. H. Palmitate oxidation by intact preparations of skeletal muscle. Biochim Biophys Acta. 1982 Nov 12;713(2):230–239. doi: 10.1016/0005-2760(82)90240-5. [DOI] [PubMed] [Google Scholar]
  16. Haldar D., Vancura A. Glycerophosphate acyltransferase from liver. Methods Enzymol. 1992;209:64–72. doi: 10.1016/0076-6879(92)09008-q. [DOI] [PubMed] [Google Scholar]
  17. Hardie D. G., Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. doi: 10.1111/j.1432-1033.1997.00259.x. [DOI] [PubMed] [Google Scholar]
  18. Henin N., Vincent M. F., Van den Berghe G. Stimulation of rat liver AMP-activated protein kinase by AMP analogues. Biochim Biophys Acta. 1996 Jun 4;1290(2):197–203. doi: 10.1016/0304-4165(96)00021-9. [DOI] [PubMed] [Google Scholar]
  19. Hjelmstad R. H., Bell R. M. Molecular insights into enzymes of membrane bilayer assembly. Biochemistry. 1991 Feb 19;30(7):1731–1740. doi: 10.1021/bi00221a001. [DOI] [PubMed] [Google Scholar]
  20. Igal R. A., Coleman R. A. Acylglycerol recycling from triacylglycerol to phospholipid, not lipase activity, is defective in neutral lipid storage disease fibroblasts. J Biol Chem. 1996 Jul 12;271(28):16644–16651. doi: 10.1074/jbc.271.28.16644. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  23. McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Merrill A. H., Jr, Gidwitz S., Bell R. M. Facile enzymatic synthesis of fatty acylcoenzyme A thioesters. J Lipid Res. 1982 Dec;23(9):1368–1373. [PubMed] [Google Scholar]
  25. Merrill G. F., Kurth E. J., Hardie D. G., Winder W. W. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol. 1997 Dec;273(6 Pt 1):E1107–E1112. doi: 10.1152/ajpendo.1997.273.6.E1107. [DOI] [PubMed] [Google Scholar]
  26. Moore F., Weekes J., Hardie D. G. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur J Biochem. 1991 Aug 1;199(3):691–697. doi: 10.1111/j.1432-1033.1991.tb16172.x. [DOI] [PubMed] [Google Scholar]
  27. Muoio D. M., Dohm G. L., Fiedorek F. T., Jr, Tapscott E. B., Coleman R. A., Dohn G. L. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes. 1997 Aug;46(8):1360–1363. doi: 10.2337/diab.46.8.1360. [DOI] [PubMed] [Google Scholar]
  28. Ponticos M., Lu Q. L., Morgan J. E., Hardie D. G., Partridge T. A., Carling D. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 1998 Mar 16;17(6):1688–1699. doi: 10.1093/emboj/17.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rump R., Buhlmann C., Borchers T., Spener F. Differentiation-dependent expression of heart type fatty acid-binding protein in C2C12 muscle cells. Eur J Cell Biol. 1996 Feb;69(2):135–142. [PubMed] [Google Scholar]
  30. Saha A. K., Vavvas D., Kurowski T. G., Apazidis A., Witters L. A., Shafrir E., Ruderman N. B. Malonyl-CoA regulation in skeletal muscle: its link to cell citrate and the glucose-fatty acid cycle. Am J Physiol. 1997 Apr;272(4 Pt 1):E641–E648. doi: 10.1152/ajpendo.1997.272.4.E641. [DOI] [PubMed] [Google Scholar]
  31. Schlossman D. M., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Evidence that the sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities are dual catalytic functions of a single microsomal enzyme. J Biol Chem. 1976 Sep 25;251(18):5738–5744. [PubMed] [Google Scholar]
  32. Shin D. H., Paulauskis J. D., Moustaïd N., Sul H. S. Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase. J Biol Chem. 1991 Dec 15;266(35):23834–23839. [PubMed] [Google Scholar]
  33. Vancura A., Haldar D. Regulation of mitochondrial and microsomal phospholipid synthesis by liver fatty acid-binding protein. J Biol Chem. 1992 Jul 15;267(20):14353–14359. [PubMed] [Google Scholar]
  34. Velasco G., Geelen M. J., Guzmán M. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch Biochem Biophys. 1997 Jan 15;337(2):169–175. doi: 10.1006/abbi.1996.9784. [DOI] [PubMed] [Google Scholar]
  35. Vila M. C., Farese R. V. Insulin rapidly increases glycerol-3-phosphate-acyltransferase activity in rat adipocytes. Arch Biochem Biophys. 1991 Feb 1;284(2):366–368. doi: 10.1016/0003-9861(91)90309-7. [DOI] [PubMed] [Google Scholar]
  36. Vila M. C., Milligan G., Standaert M. L., Farese R. V. Insulin activates glycerol-3-phosphate acyltransferase (de novo phosphatidic acid synthesis) through a phospholipid-derived mediator. Apparent involvement of Gi alpha and activation of a phospholipase C. Biochemistry. 1990 Sep 18;29(37):8735–8740. doi: 10.1021/bi00489a033. [DOI] [PubMed] [Google Scholar]
  37. Vincent M. F., Marangos P. J., Gruber H. E., Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes. 1991 Oct;40(10):1259–1266. doi: 10.2337/diab.40.10.1259. [DOI] [PubMed] [Google Scholar]
  38. Young M. E., Radda G. K., Leighton B. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR--an activator of AMP-activated protein kinase. FEBS Lett. 1996 Mar 11;382(1-2):43–47. doi: 10.1016/0014-5793(96)00129-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES