Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):799–806.

Dual role for transcription factor AP-2 in the regulation of the major fetal promoter P3 of the gene for human insulin-like growth factor II.

L E Rietveld 1, A M Koonen-Reemst 1, J S Sussenbach 1, P E Holthuizen 1
PMCID: PMC1220119  PMID: 10051455

Abstract

The human insulin-like growth factor II (IGF-II) gene contains four promoters that are differentially active during cell growth and development. Promoter 3 (P3) is the most active promoter in fetal and non-hepatic adult tissues. In addition to its expression during development, P3 is also the major promoter in many tumour tissues and IGF-II-expressing cell lines. Here we show that AP-2 has a dual function in P3 regulation in vivo as well as in vitro. In cells expressing low levels of endogenous AP-2, AP-2 overexpression activates P3, whereas P3 promoter activity is inhibited in cells containing abundant AP-2. Four potential AP-2-binding sites were identified in footprinting studies with recombinant AP-2. One of these AP-2-binding sites is located within the previously identified element P3-4 that contains two adjacent binding sites for IGF-II promoter-binding proteins IPBP3 and IPBP4/5. By applying binding competition assays and mutational analysis it is shown that AP-2 interferes with IPBP3 binding and transactivation in vivo as well as in vitro. Furthermore, AP-2 can bind additional elements in the proximal P3 promoter that also contribute to AP-2-mediated transactivation as shown by transient transfection assays. From these results we conclude that AP-2 is an important regulator in vivo and in vitro of IGF-II P3 activity.

Full Text

The Full Text of this article is available as a PDF (206.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen A., Beno D. W., Davis B. H. Suppression of stellate cell type I collagen gene expression involves AP-2 transmodulation of nuclear factor-1-dependent gene transcription. J Biol Chem. 1996 Oct 18;271(42):25994–25998. doi: 10.1074/jbc.271.42.25994. [DOI] [PubMed] [Google Scholar]
  2. Daughaday W. H. The possible autocrine/paracrine and endocrine roles of insulin-like growth factors of human tumors. Endocrinology. 1990 Jul;127(1):1–4. doi: 10.1210/endo-127-1-1. [DOI] [PubMed] [Google Scholar]
  3. DeChiara T. M., Efstratiadis A., Robertson E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature. 1990 May 3;345(6270):78–80. doi: 10.1038/345078a0. [DOI] [PubMed] [Google Scholar]
  4. Doerksen L. F., Bhattacharya A., Kannan P., Pratt D., Tainsky M. A. Functional interaction between a RARE and an AP-2 binding site in the regulation of the human HOX A4 gene promoter. Nucleic Acids Res. 1996 Jul 15;24(14):2849–2856. doi: 10.1093/nar/24.14.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duan C., Clemmons D. R. Transcription factor AP-2 regulates human insulin-like growth factor binding protein-5 gene expression. J Biol Chem. 1995 Oct 20;270(42):24844–24851. doi: 10.1074/jbc.270.42.24844. [DOI] [PubMed] [Google Scholar]
  6. Gaubatz S., Imhof A., Dosch R., Werner O., Mitchell P., Buettner R., Eilers M. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J. 1995 Apr 3;14(7):1508–1519. doi: 10.1002/j.1460-2075.1995.tb07137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Getman D. K., Mutero A., Inoue K., Taylor P. Transcription factor repression and activation of the human acetylcholinesterase gene. J Biol Chem. 1995 Oct 6;270(40):23511–23519. doi: 10.1074/jbc.270.40.23511. [DOI] [PubMed] [Google Scholar]
  8. Gille J., Swerlick R. A., Caughman S. W. Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation. EMBO J. 1997 Feb 17;16(4):750–759. doi: 10.1093/emboj/16.4.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hyman S. E., Comb M., Pearlberg J., Goodman H. M. An AP-2 element acts synergistically with the cyclic AMP- and phorbol ester-inducible enhancer of the human proenkephalin gene. Mol Cell Biol. 1989 Jan;9(1):321–324. doi: 10.1128/mcb.9.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
  11. Jiang M. S., Tang Q. Q., McLenithan J., Geiman D., Shillinglaw W., Henzel W. J., Lane M. D. Derepression of the C/EBPalpha gene during adipogenesis: identification of AP-2alpha as a repressor. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3467–3471. doi: 10.1073/pnas.95.7.3467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kannan P., Buettner R., Chiao P. J., Yim S. O., Sarkiss M., Tainsky M. A. N-ras oncogene causes AP-2 transcriptional self-interference, which leads to transformation. Genes Dev. 1994 Jun 1;8(11):1258–1269. doi: 10.1101/gad.8.11.1258. [DOI] [PubMed] [Google Scholar]
  13. Lee B. S., Krits I., Crane-Zelkovic M. K., Gluck S. L. A novel transcription factor regulates expression of the vacuolar H+-ATPase B2 subunit through AP-2 sites during monocytic differentiation. J Biol Chem. 1997 Jan 3;272(1):174–181. [PubMed] [Google Scholar]
  14. Lüscher B., Mitchell P. J., Williams T., Tjian R. Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 1989 Oct;3(10):1507–1517. doi: 10.1101/gad.3.10.1507. [DOI] [PubMed] [Google Scholar]
  15. Manley J. L., Fire A., Samuels M., Sharp P. A. In vitro transcription: whole-cell extract. Methods Enzymol. 1983;101:568–582. doi: 10.1016/0076-6879(83)01038-1. [DOI] [PubMed] [Google Scholar]
  16. Matsumoto K., Gaetano C., Daughaday W. H., Thiele C. J. Retinoic acid regulates insulin-like growth factor II expression in a neuroblastoma cell line. Endocrinology. 1992 Jun;130(6):3669–3676. doi: 10.1210/endo.130.6.1375906. [DOI] [PubMed] [Google Scholar]
  17. Melino G., Stephanou A., Annicchiarico-Petruzzelli M., Knight R. A., Finazzi-Agró A., Lightman S. L. Modulation of IGF-2 expression during growth and differentiation of human neuroblastoma cells: retinoic acid may induce IGF-2. Neurosci Lett. 1993 Mar 19;151(2):187–191. doi: 10.1016/0304-3940(93)90017-f. [DOI] [PubMed] [Google Scholar]
  18. Mitchell P. J., Wang C., Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. doi: 10.1016/0092-8674(87)90512-5. [DOI] [PubMed] [Google Scholar]
  19. Muchardt C., Seeler J. S., Nirula A., Gong S., Gaynor R. Transcription factor AP-2 activates gene expression of HTLV-I. EMBO J. 1992 Jul;11(7):2573–2581. doi: 10.1002/j.1460-2075.1992.tb05322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perkins N. D., Agranoff A. B., Duckett C. S., Nabel G. J. Transcription factor AP-2 regulates human immunodeficiency virus type 1 gene expression. J Virol. 1994 Oct;68(10):6820–6823. doi: 10.1128/jvi.68.10.6820-6823.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pruijn G. J., van Driel W., van Miltenburg R. T., van der Vliet P. C. Promoter and enhancer elements containing a conserved sequence motif are recognized by nuclear factor III, a protein stimulating adenovirus DNA replication. EMBO J. 1987 Dec 1;6(12):3771–3778. doi: 10.1002/j.1460-2075.1987.tb02712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rietveld L. E., Holthuizen P. E., Sussenbach J. S. Identification of a key regulatory element for the basal activity of the human insulin-like growth factor II gene promoter P3. Biochem J. 1997 Nov 1;327(Pt 3):689–697. doi: 10.1042/bj3270689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williams T., Admon A., Lüscher B., Tjian R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 1988 Dec;2(12A):1557–1569. doi: 10.1101/gad.2.12a.1557. [DOI] [PubMed] [Google Scholar]
  24. Xie W. F., Kondo S., Sandell L. J. Regulation of the mouse cartilage-derived retinoic acid-sensitive protein gene by the transcription factor AP-2. J Biol Chem. 1998 Feb 27;273(9):5026–5032. doi: 10.1074/jbc.273.9.5026. [DOI] [PubMed] [Google Scholar]
  25. Zhang J., Hagopian-Donaldson S., Serbedzija G., Elsemore J., Plehn-Dujowich D., McMahon A. P., Flavell R. A., Williams T. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature. 1996 May 16;381(6579):238–241. doi: 10.1038/381238a0. [DOI] [PubMed] [Google Scholar]
  26. de Pagter-Holthuizen P., Höppener J. W., Jansen M., Geurts van Kessel A. H., van Ommen G. J., Sussenbach J. S. Chromosomal localization and preliminary characterization of the human gene encoding insulin-like growth factor II. Hum Genet. 1985;69(2):170–173. doi: 10.1007/BF00293291. [DOI] [PubMed] [Google Scholar]
  27. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van Dijk M. A., Holthuizen P. E., Sussenbach J. S. Elements required for activation of the major promoter of the human insulin-like growth factor II gene. Mol Cell Endocrinol. 1992 Oct;88(1-3):175–185. doi: 10.1016/0303-7207(92)90022-x. [DOI] [PubMed] [Google Scholar]
  29. van Dijk M. A., van Schaik F. M., Bootsma H. J., Holthuizen P., Sussenbach J. S. Initial characterization of the four promoters of the human insulin-like growth factor II gene. Mol Cell Endocrinol. 1991 Oct;81(1-3):81–94. doi: 10.1016/0303-7207(91)90207-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES