Abstract
The human insulin-like growth factor II (IGF-II) gene contains four promoters that are differentially active during cell growth and development. Promoter 3 (P3) is the most active promoter in fetal and non-hepatic adult tissues. In addition to its expression during development, P3 is also the major promoter in many tumour tissues and IGF-II-expressing cell lines. Here we show that AP-2 has a dual function in P3 regulation in vivo as well as in vitro. In cells expressing low levels of endogenous AP-2, AP-2 overexpression activates P3, whereas P3 promoter activity is inhibited in cells containing abundant AP-2. Four potential AP-2-binding sites were identified in footprinting studies with recombinant AP-2. One of these AP-2-binding sites is located within the previously identified element P3-4 that contains two adjacent binding sites for IGF-II promoter-binding proteins IPBP3 and IPBP4/5. By applying binding competition assays and mutational analysis it is shown that AP-2 interferes with IPBP3 binding and transactivation in vivo as well as in vitro. Furthermore, AP-2 can bind additional elements in the proximal P3 promoter that also contribute to AP-2-mediated transactivation as shown by transient transfection assays. From these results we conclude that AP-2 is an important regulator in vivo and in vitro of IGF-II P3 activity.
Full Text
The Full Text of this article is available as a PDF (206.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen A., Beno D. W., Davis B. H. Suppression of stellate cell type I collagen gene expression involves AP-2 transmodulation of nuclear factor-1-dependent gene transcription. J Biol Chem. 1996 Oct 18;271(42):25994–25998. doi: 10.1074/jbc.271.42.25994. [DOI] [PubMed] [Google Scholar]
- Daughaday W. H. The possible autocrine/paracrine and endocrine roles of insulin-like growth factors of human tumors. Endocrinology. 1990 Jul;127(1):1–4. doi: 10.1210/endo-127-1-1. [DOI] [PubMed] [Google Scholar]
- DeChiara T. M., Efstratiadis A., Robertson E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature. 1990 May 3;345(6270):78–80. doi: 10.1038/345078a0. [DOI] [PubMed] [Google Scholar]
- Doerksen L. F., Bhattacharya A., Kannan P., Pratt D., Tainsky M. A. Functional interaction between a RARE and an AP-2 binding site in the regulation of the human HOX A4 gene promoter. Nucleic Acids Res. 1996 Jul 15;24(14):2849–2856. doi: 10.1093/nar/24.14.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duan C., Clemmons D. R. Transcription factor AP-2 regulates human insulin-like growth factor binding protein-5 gene expression. J Biol Chem. 1995 Oct 20;270(42):24844–24851. doi: 10.1074/jbc.270.42.24844. [DOI] [PubMed] [Google Scholar]
- Gaubatz S., Imhof A., Dosch R., Werner O., Mitchell P., Buettner R., Eilers M. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J. 1995 Apr 3;14(7):1508–1519. doi: 10.1002/j.1460-2075.1995.tb07137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Getman D. K., Mutero A., Inoue K., Taylor P. Transcription factor repression and activation of the human acetylcholinesterase gene. J Biol Chem. 1995 Oct 6;270(40):23511–23519. doi: 10.1074/jbc.270.40.23511. [DOI] [PubMed] [Google Scholar]
- Gille J., Swerlick R. A., Caughman S. W. Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation. EMBO J. 1997 Feb 17;16(4):750–759. doi: 10.1093/emboj/16.4.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman S. E., Comb M., Pearlberg J., Goodman H. M. An AP-2 element acts synergistically with the cyclic AMP- and phorbol ester-inducible enhancer of the human proenkephalin gene. Mol Cell Biol. 1989 Jan;9(1):321–324. doi: 10.1128/mcb.9.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
- Jiang M. S., Tang Q. Q., McLenithan J., Geiman D., Shillinglaw W., Henzel W. J., Lane M. D. Derepression of the C/EBPalpha gene during adipogenesis: identification of AP-2alpha as a repressor. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3467–3471. doi: 10.1073/pnas.95.7.3467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kannan P., Buettner R., Chiao P. J., Yim S. O., Sarkiss M., Tainsky M. A. N-ras oncogene causes AP-2 transcriptional self-interference, which leads to transformation. Genes Dev. 1994 Jun 1;8(11):1258–1269. doi: 10.1101/gad.8.11.1258. [DOI] [PubMed] [Google Scholar]
- Lee B. S., Krits I., Crane-Zelkovic M. K., Gluck S. L. A novel transcription factor regulates expression of the vacuolar H+-ATPase B2 subunit through AP-2 sites during monocytic differentiation. J Biol Chem. 1997 Jan 3;272(1):174–181. [PubMed] [Google Scholar]
- Lüscher B., Mitchell P. J., Williams T., Tjian R. Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 1989 Oct;3(10):1507–1517. doi: 10.1101/gad.3.10.1507. [DOI] [PubMed] [Google Scholar]
- Manley J. L., Fire A., Samuels M., Sharp P. A. In vitro transcription: whole-cell extract. Methods Enzymol. 1983;101:568–582. doi: 10.1016/0076-6879(83)01038-1. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Gaetano C., Daughaday W. H., Thiele C. J. Retinoic acid regulates insulin-like growth factor II expression in a neuroblastoma cell line. Endocrinology. 1992 Jun;130(6):3669–3676. doi: 10.1210/endo.130.6.1375906. [DOI] [PubMed] [Google Scholar]
- Melino G., Stephanou A., Annicchiarico-Petruzzelli M., Knight R. A., Finazzi-Agró A., Lightman S. L. Modulation of IGF-2 expression during growth and differentiation of human neuroblastoma cells: retinoic acid may induce IGF-2. Neurosci Lett. 1993 Mar 19;151(2):187–191. doi: 10.1016/0304-3940(93)90017-f. [DOI] [PubMed] [Google Scholar]
- Mitchell P. J., Wang C., Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. doi: 10.1016/0092-8674(87)90512-5. [DOI] [PubMed] [Google Scholar]
- Muchardt C., Seeler J. S., Nirula A., Gong S., Gaynor R. Transcription factor AP-2 activates gene expression of HTLV-I. EMBO J. 1992 Jul;11(7):2573–2581. doi: 10.1002/j.1460-2075.1992.tb05322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins N. D., Agranoff A. B., Duckett C. S., Nabel G. J. Transcription factor AP-2 regulates human immunodeficiency virus type 1 gene expression. J Virol. 1994 Oct;68(10):6820–6823. doi: 10.1128/jvi.68.10.6820-6823.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pruijn G. J., van Driel W., van Miltenburg R. T., van der Vliet P. C. Promoter and enhancer elements containing a conserved sequence motif are recognized by nuclear factor III, a protein stimulating adenovirus DNA replication. EMBO J. 1987 Dec 1;6(12):3771–3778. doi: 10.1002/j.1460-2075.1987.tb02712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rietveld L. E., Holthuizen P. E., Sussenbach J. S. Identification of a key regulatory element for the basal activity of the human insulin-like growth factor II gene promoter P3. Biochem J. 1997 Nov 1;327(Pt 3):689–697. doi: 10.1042/bj3270689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams T., Admon A., Lüscher B., Tjian R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 1988 Dec;2(12A):1557–1569. doi: 10.1101/gad.2.12a.1557. [DOI] [PubMed] [Google Scholar]
- Xie W. F., Kondo S., Sandell L. J. Regulation of the mouse cartilage-derived retinoic acid-sensitive protein gene by the transcription factor AP-2. J Biol Chem. 1998 Feb 27;273(9):5026–5032. doi: 10.1074/jbc.273.9.5026. [DOI] [PubMed] [Google Scholar]
- Zhang J., Hagopian-Donaldson S., Serbedzija G., Elsemore J., Plehn-Dujowich D., McMahon A. P., Flavell R. A., Williams T. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature. 1996 May 16;381(6579):238–241. doi: 10.1038/381238a0. [DOI] [PubMed] [Google Scholar]
- de Pagter-Holthuizen P., Höppener J. W., Jansen M., Geurts van Kessel A. H., van Ommen G. J., Sussenbach J. S. Chromosomal localization and preliminary characterization of the human gene encoding insulin-like growth factor II. Hum Genet. 1985;69(2):170–173. doi: 10.1007/BF00293291. [DOI] [PubMed] [Google Scholar]
- de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Dijk M. A., Holthuizen P. E., Sussenbach J. S. Elements required for activation of the major promoter of the human insulin-like growth factor II gene. Mol Cell Endocrinol. 1992 Oct;88(1-3):175–185. doi: 10.1016/0303-7207(92)90022-x. [DOI] [PubMed] [Google Scholar]
- van Dijk M. A., van Schaik F. M., Bootsma H. J., Holthuizen P., Sussenbach J. S. Initial characterization of the four promoters of the human insulin-like growth factor II gene. Mol Cell Endocrinol. 1991 Oct;81(1-3):81–94. doi: 10.1016/0303-7207(91)90207-9. [DOI] [PubMed] [Google Scholar]