Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 1;339(Pt 1):1–10.

The protein disulphide-isomerase family: unravelling a string of folds.

D M Ferrari 1, H D Söling 1
PMCID: PMC1220120  PMID: 10085220

Abstract

The mammalian protein disulphide-isomerase (PDI) family encompasses several highly divergent proteins that are involved in the processing and maturation of secretory proteins in the endoplasmic reticulum. These proteins are characterized by the presence of one or more domains of roughly 95-110 amino acids related to the cytoplasmic protein thioredoxin. All but the PDI-D subfamily are composed entirely of repeats of such domains, with at least one domain containing and one domain lacking a redox-active -Cys-Xaa-Xaa-Cys- tetrapeptide. In addition to their known roles as redox catalysts and isomerases, the last few years have revealed additional functions of the PDI proteins, including peptide binding, cell adhesion and perhaps chaperone activities. Attention is now turning to the non-redox-active domains of the PDIs, which may play an important role in all of the known activities of these proteins. Thus the presence of both redox-active and -inactive domains within these proteins portends a complexity of functions differentially accommodated by the various family members.

Full Text

The Full Text of this article is available as a PDF (185.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen C. L., Matthey-Dupraz A., Missiakas D., Raina S. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol Microbiol. 1997 Oct;26(1):121–132. doi: 10.1046/j.1365-2958.1997.5581925.x. [DOI] [PubMed] [Google Scholar]
  2. Baksh S., Burns K., Andrin C., Michalak M. Interaction of calreticulin with protein disulfide isomerase. J Biol Chem. 1995 Dec 29;270(52):31338–31344. doi: 10.1074/jbc.270.52.31338. [DOI] [PubMed] [Google Scholar]
  3. Bardwell J. C. Building bridges: disulphide bond formation in the cell. Mol Microbiol. 1994 Oct;14(2):199–205. doi: 10.1111/j.1365-2958.1994.tb01281.x. [DOI] [PubMed] [Google Scholar]
  4. Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
  5. Bennett C. F., Balcarek J. M., Varrichio A., Crooke S. T. Molecular cloning and complete amino-acid sequence of form-I phosphoinositide-specific phospholipase C. Nature. 1988 Jul 21;334(6179):268–270. doi: 10.1038/334268a0. [DOI] [PubMed] [Google Scholar]
  6. Bergman L. W., Kuehl W. M. Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J Biol Chem. 1979 Sep 25;254(18):8869–8876. [PubMed] [Google Scholar]
  7. Bjelland S. Tissue distribution and molecular heterogeneity of bovine thiol:protein-disulphide oxidoreductase (disulphide interchange enzyme). Comp Biochem Physiol B. 1987;87(4):907–914. doi: 10.1016/0305-0491(87)90411-1. [DOI] [PubMed] [Google Scholar]
  8. Bourdi M., Demady D., Martin J. L., Jabbour S. K., Martin B. M., George J. W., Pohl L. R. cDNA cloning and baculovirus expression of the human liver endoplasmic reticulum P58: characterization as a protein disulfide isomerase isoform, but not as a protease or a carnitine acyltransferase. Arch Biochem Biophys. 1995 Nov 10;323(2):397–403. doi: 10.1006/abbi.1995.0060. [DOI] [PubMed] [Google Scholar]
  9. Brodsky J. L., McCracken A. A. ER-associated and proteasomemediated protein degradation: how two topologically restricted events came together. Trends Cell Biol. 1997 Apr;7(4):151–156. doi: 10.1016/S0962-8924(97)01020-9. [DOI] [PubMed] [Google Scholar]
  10. Cai H., Wang C. C., Tsou C. L. Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem. 1994 Oct 7;269(40):24550–24552. [PubMed] [Google Scholar]
  11. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 1997 May;7(5):193–200. doi: 10.1016/S0962-8924(97)01032-5. [DOI] [PubMed] [Google Scholar]
  12. Chaudhuri M. M., Tonin P. N., Lewis W. H., Srinivasan P. R. The gene for a novel protein, a member of the protein disulphide isomerase/form I phosphoinositide-specific phospholipase C family, is amplified in hydroxyurea-resistant cells. Biochem J. 1992 Feb 1;281(Pt 3):645–650. doi: 10.1042/bj2810645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chivers P. T., Laboissière M. C., Raines R. T. The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J. 1996 Jun 3;15(11):2659–2667. [PMC free article] [PubMed] [Google Scholar]
  14. Chivers P. T., Raines R. T. General acid/base catalysis in the active site of Escherichia coli thioredoxin. Biochemistry. 1997 Dec 16;36(50):15810–15816. doi: 10.1021/bi971504l. [DOI] [PubMed] [Google Scholar]
  15. Choi H. J., Kang S. W., Yang C. H., Rhee S. G., Ryu S. E. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat Struct Biol. 1998 May;5(5):400–406. doi: 10.1038/nsb0598-400. [DOI] [PubMed] [Google Scholar]
  16. Dai Y., Wang C. A mutant truncated protein disulfide isomerase with no chaperone activity. J Biol Chem. 1997 Oct 31;272(44):27572–27576. doi: 10.1074/jbc.272.44.27572. [DOI] [PubMed] [Google Scholar]
  17. Darby N. J., Creighton T. E. Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. Biochemistry. 1995 Sep 19;34(37):11725–11735. doi: 10.1021/bi00037a009. [DOI] [PubMed] [Google Scholar]
  18. Darby N. J., Freedman R. B., Creighton T. E. Dissecting the mechanism of protein disulfide isomerase: catalysis of disulfide bond formation in a model peptide. Biochemistry. 1994 Jun 28;33(25):7937–7947. doi: 10.1021/bi00191a022. [DOI] [PubMed] [Google Scholar]
  19. Darby N. J., Penka E., Vincentelli R. The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J Mol Biol. 1998 Feb 13;276(1):239–247. doi: 10.1006/jmbi.1997.1504. [DOI] [PubMed] [Google Scholar]
  20. Demmer J., Zhou C., Hubbard M. J. Molecular cloning of ERp29, a novel and widely expressed resident of the endoplasmic reticulum. FEBS Lett. 1997 Feb 3;402(2-3):145–150. doi: 10.1016/s0014-5793(96)01513-x. [DOI] [PubMed] [Google Scholar]
  21. Desilva M. G., Lu J., Donadel G., Modi W. S., Xie H., Notkins A. L., Lan M. S. Characterization and chromosomal localization of a new protein disulfide isomerase, PDIp, highly expressed in human pancreas. DNA Cell Biol. 1996 Jan;15(1):9–16. doi: 10.1089/dna.1996.15.9. [DOI] [PubMed] [Google Scholar]
  22. Desilva M. G., Notkins A. L., Lan M. S. Molecular characterization of a pancreas-specific protein disulfide isomerase, PDIp. DNA Cell Biol. 1997 Mar;16(3):269–274. doi: 10.1089/dna.1997.16.269. [DOI] [PubMed] [Google Scholar]
  23. Dorner A. J., Wasley L. C., Raney P., Haugejorden S., Green M., Kaufman R. J. The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J Biol Chem. 1990 Dec 15;265(35):22029–22034. [PubMed] [Google Scholar]
  24. Dyson H. J., Jeng M. F., Tennant L. L., Slaby I., Lindell M., Cui D. S., Kuprin S., Holmgren A. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry. 1997 Mar 4;36(9):2622–2636. doi: 10.1021/bi961801a. [DOI] [PubMed] [Google Scholar]
  25. Edman J. C., Ellis L., Blacher R. W., Roth R. A., Rutter W. J. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature. 1985 Sep 19;317(6034):267–270. doi: 10.1038/317267a0. [DOI] [PubMed] [Google Scholar]
  26. Eklund H., Gleason F. K., Holmgren A. Structural and functional relations among thioredoxins of different species. Proteins. 1991;11(1):13–28. doi: 10.1002/prot.340110103. [DOI] [PubMed] [Google Scholar]
  27. Elliott J. G., Oliver J. D., High S. The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins. J Biol Chem. 1997 May 23;272(21):13849–13855. doi: 10.1074/jbc.272.21.13849. [DOI] [PubMed] [Google Scholar]
  28. Farquhar R., Honey N., Murant S. J., Bossier P., Schultz L., Montgomery D., Ellis R. W., Freedman R. B., Tuite M. F. Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae. Gene. 1991 Dec 1;108(1):81–89. doi: 10.1016/0378-1119(91)90490-3. [DOI] [PubMed] [Google Scholar]
  29. Feng W., Bedows E., Norton S. E., Ruddon R. W. Novel covalent chaperone complexes associated with human chorionic gonadotropin beta subunit folding intermediates. J Biol Chem. 1996 Aug 2;271(31):18543–18548. doi: 10.1074/jbc.271.31.18543. [DOI] [PubMed] [Google Scholar]
  30. Ferrari D. M., Nguyen Van P., Kratzin H. D., Söling H. D. ERp28, a human endoplasmic-reticulum-lumenal protein, is a member of the protein disulfide isomerase family but lacks a CXXC thioredoxin-box motif. Eur J Biochem. 1998 Aug 1;255(3):570–579. doi: 10.1046/j.1432-1327.1998.2550570.x. [DOI] [PubMed] [Google Scholar]
  31. Frand A. R., Kaiser C. A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell. 1998 Jan;1(2):161–170. doi: 10.1016/s1097-2765(00)80017-9. [DOI] [PubMed] [Google Scholar]
  32. Freedman R. B., Dunn A. D., Ruddock L. W. Protein folding: a missing redox link in the endoplasmic reticulum. Curr Biol. 1998 Jun 18;8(13):R468–R470. doi: 10.1016/s0960-9822(98)70295-7. [DOI] [PubMed] [Google Scholar]
  33. Freedman R. B., Hawkins H. C., McLaughlin S. H. Protein disulfide-isomerase. Methods Enzymol. 1995;251:397–406. doi: 10.1016/0076-6879(95)51143-1. [DOI] [PubMed] [Google Scholar]
  34. Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
  35. Freedman R. B. The formation of protein disulphide bonds. Curr Opin Struct Biol. 1995 Feb;5(1):85–91. doi: 10.1016/0959-440x(95)80013-q. [DOI] [PubMed] [Google Scholar]
  36. Füllekrug J., Sönnichsen B., Wünsch U., Arseven K., Nguyen Van P., Söling H. D., Mieskes G. CaBP1, a calcium binding protein of the thioredoxin family, is a resident KDEL protein of the ER and not of the intermediate compartment. J Cell Sci. 1994 Oct;107(Pt 10):2719–2727. doi: 10.1242/jcs.107.10.2719. [DOI] [PubMed] [Google Scholar]
  37. GOLDBERGER R. F., EPSTEIN C. J., ANFINSEN C. B. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem. 1963 Feb;238:628–635. [PubMed] [Google Scholar]
  38. Gaudet R., Bohm A., Sigler P. B. Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin. Cell. 1996 Nov 1;87(3):577–588. doi: 10.1016/s0092-8674(00)81376-8. [DOI] [PubMed] [Google Scholar]
  39. Gilbert H. F. Protein disulfide isomerase. Methods Enzymol. 1998;290:26–50. doi: 10.1016/s0076-6879(98)90005-2. [DOI] [PubMed] [Google Scholar]
  40. Guddat L. W., Bardwell J. C., Zander T., Martin J. L. The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Protein Sci. 1997 Jun;6(6):1148–1156. doi: 10.1002/pro.5560060603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Guthapfel R., Guéguen P., Quéméneur E. ATP binding and hydrolysis by the multifunctional protein disulfide isomerase. J Biol Chem. 1996 Feb 2;271(5):2663–2666. doi: 10.1074/jbc.271.5.2663. [DOI] [PubMed] [Google Scholar]
  42. Günther R., Bräuer C., Janetzky B., Förster H. H., Ehbrecht I. M., Lehle L., Küntzel H. The Saccharomyces cerevisiae TRG1 gene is essential for growth and encodes a lumenal endoplasmic reticulum glycoprotein involved in the maturation of vacuolar carboxypeptidase. J Biol Chem. 1991 Dec 25;266(36):24557–24563. [PubMed] [Google Scholar]
  43. Günther R., Srinivasan M., Haugejorden S., Green M., Ehbrecht I. M., Küntzel H. Functional replacement of the Saccharomyces cerevisiae Trg1/Pdi1 protein by members of the mammalian protein disulfide isomerase family. J Biol Chem. 1993 Apr 15;268(11):7728–7732. [PubMed] [Google Scholar]
  44. Hausman R. E., Rao A. S., Ren Y., Sagar G. D., Shah B. H. Retina cognin, cell signaling, and neuronal differentiation in the developing retina. Dev Dyn. 1993 Apr;196(4):263–266. doi: 10.1002/aja.1001960407. [DOI] [PubMed] [Google Scholar]
  45. Hawkins H. C., Blackburn E. C., Freedman R. B. Comparison of the activities of protein disulphide-isomerase and thioredoxin in catalysing disulphide isomerization in a protein substrate. Biochem J. 1991 Apr 15;275(Pt 2):349–353. doi: 10.1042/bj2750349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hayano T., Hirose M., Kikuchi M. Protein disulfide isomerase mutant lacking its isomerase activity accelerates protein folding in the cell. FEBS Lett. 1995 Dec 27;377(3):505–511. doi: 10.1016/0014-5793(95)01410-1. [DOI] [PubMed] [Google Scholar]
  47. Hayano T., Kikuchi M. Molecular cloning of the cDNA encoding a novel protein disulfide isomerase-related protein (PDIR). FEBS Lett. 1995 Sep 25;372(2-3):210–214. doi: 10.1016/0014-5793(95)00996-m. [DOI] [PubMed] [Google Scholar]
  48. Hensel G., Assmann V., Kern H. F. Hormonal regulation of protein disulfide isomerase and chaperone synthesis in the rat exocrine pancreas. Eur J Cell Biol. 1994 Apr;63(2):208–218. [PubMed] [Google Scholar]
  49. Hirano N., Shibasaki F., Sakai R., Tanaka T., Nishida J., Yazaki Y., Takenawa T., Hirai H. Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. Eur J Biochem. 1995 Nov 15;234(1):336–342. doi: 10.1111/j.1432-1033.1995.336_c.x. [DOI] [PubMed] [Google Scholar]
  50. Holmgren A., Söderberg B. O., Eklund H., Brändén C. I. Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2305–2309. doi: 10.1073/pnas.72.6.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  52. Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995 Mar 15;3(3):239–243. doi: 10.1016/s0969-2126(01)00153-8. [DOI] [PubMed] [Google Scholar]
  53. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi: 10.1146/annurev.bi.54.070185.001321. [DOI] [PubMed] [Google Scholar]
  54. Holst B., Tachibana C., Winther J. R. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum. J Cell Biol. 1997 Sep 22;138(6):1229–1238. doi: 10.1083/jcb.138.6.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Hsu T. A., Watson S., Eiden J. J., Betenbaugh M. J. Rescue of immunoglobulins from insolubility is facilitated by PDI in the baculovirus expression system. Protein Expr Purif. 1996 May;7(3):281–288. doi: 10.1006/prep.1996.0040. [DOI] [PubMed] [Google Scholar]
  56. Huber-Wunderlich M., Glockshuber R. A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold Des. 1998;3(3):161–171. doi: 10.1016/S1359-0278(98)00024-8. [DOI] [PubMed] [Google Scholar]
  57. Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
  58. Hög J. O., von Bahr-Lindström H., Josephson S., Wallace B. J., Kushner S. R., Jörnvall H., Holmgren A. Nucleotide sequence of the thioredoxin gene from Escherichia coli. Biosci Rep. 1984 Nov;4(11):917–923. doi: 10.1007/BF01116889. [DOI] [PubMed] [Google Scholar]
  59. Iida K. I., Miyaishi O., Iwata Y., Kozaki K. I., Matsuyama M., Saga S. Distinct distribution of protein disulfide isomerase family proteins in rat tissues. J Histochem Cytochem. 1996 Jul;44(7):751–759. doi: 10.1177/44.7.8675996. [DOI] [PubMed] [Google Scholar]
  60. Jeng M. F., Holmgren A., Dyson H. J. Proton sharing between cysteine thiols in Escherichia coli thioredoxin: implications for the mechanism of protein disulfide reduction. Biochemistry. 1995 Aug 15;34(32):10101–10105. doi: 10.1021/bi00032a001. [DOI] [PubMed] [Google Scholar]
  61. John D. C., Bulleid N. J. Prolyl 4-hydroxylase: defective assembly of alpha-subunit mutants indicates that assembled alpha-subunits are intramolecularly disulfide bonded. Biochemistry. 1994 Nov 29;33(47):14018–14025. doi: 10.1021/bi00251a009. [DOI] [PubMed] [Google Scholar]
  62. John D. C., Grant M. E., Bulleid N. J. Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the beta-subunit (PDI) in preventing misfolding and aggregation of the alpha-subunit. EMBO J. 1993 Apr;12(4):1587–1595. doi: 10.1002/j.1460-2075.1993.tb05803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  64. Kellokumpu S., Suokas M., Risteli L., Myllylä R. Protein disulfide isomerase and newly synthesized procollagen chains form higher-order structures in the lumen of the endoplasmic reticulum. J Biol Chem. 1997 Jan 31;272(5):2770–2777. doi: 10.1074/jbc.272.5.2770. [DOI] [PubMed] [Google Scholar]
  65. Kemmink J., Darby N. J., Dijkstra K., Nilges M., Creighton T. E. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr Biol. 1997 Apr 1;7(4):239–245. doi: 10.1016/s0960-9822(06)00119-9. [DOI] [PubMed] [Google Scholar]
  66. Kim J., Mayfield S. P. Protein disulfide isomerase as a regulator of chloroplast translational activation. Science. 1997 Dec 12;278(5345):1954–1957. doi: 10.1126/science.278.5345.1954. [DOI] [PubMed] [Google Scholar]
  67. Kim P. S., Arvan P. Hormonal regulation of thyroglobulin export from the endoplasmic reticulum of cultured thyrocytes. J Biol Chem. 1993 Mar 5;268(7):4873–4879. [PubMed] [Google Scholar]
  68. Klappa P., Freedman R. B., Zimmermann R. Protein disulphide isomerase and a lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient contact with secretory proteins during late stages of translocation. Eur J Biochem. 1995 Sep 15;232(3):755–764. [PubMed] [Google Scholar]
  69. Klappa P., Hawkins H. C., Freedman R. B. Interactions between protein disulphide isomerase and peptides. Eur J Biochem. 1997 Aug 15;248(1):37–42. doi: 10.1111/j.1432-1033.1997.t01-1-00037.x. [DOI] [PubMed] [Google Scholar]
  70. Klappa P., Ruddock L. W., Darby N. J., Freedman R. B. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 1998 Feb 16;17(4):927–935. doi: 10.1093/emboj/17.4.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Klappa P., Stromer T., Zimmermann R., Ruddock L. W., Freedman R. B. A pancreas-specific glycosylated protein disulphide-isomerase binds to misfolded proteins and peptides with an interaction inhibited by oestrogens. Eur J Biochem. 1998 May 15;254(1):63–69. doi: 10.1046/j.1432-1327.1998.2540063.x. [DOI] [PubMed] [Google Scholar]
  72. Koivunen P., Helaakoski T., Annunen P., Veijola J., Räisänen S., Pihlajaniemi T., Kivirikko K. I. ERp60 does not substitute for protein disulphide isomerase as the beta-subunit of prolyl 4-hydroxylase. Biochem J. 1996 Jun 1;316(Pt 2):599–605. doi: 10.1042/bj3160599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Konsolaki M., Schüpbach T. windbeutel, a gene required for dorsoventral patterning in Drosophila, encodes a protein that has homologies to vertebrate proteins of the endoplasmic reticulum. Genes Dev. 1998 Jan 1;12(1):120–131. doi: 10.1101/gad.12.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Kortemme T., Darby N. J., Creighton T. E. Electrostatic interactions in the active site of the N-terminal thioredoxin-like domain of protein disulfide isomerase. Biochemistry. 1996 Nov 19;35(46):14503–14511. doi: 10.1021/bi9617724. [DOI] [PubMed] [Google Scholar]
  75. Kozaki K., Miyaishi O., Asai N., Iida K., Sakata K., Hayashi M., Nishida T., Matsuyama M., Shimizu S., Kaneda T. Tissue distribution of ERp61 and association of its increased expression with IgG production in hybridoma cells. Exp Cell Res. 1994 Aug;213(2):348–358. doi: 10.1006/excr.1994.1209. [DOI] [PubMed] [Google Scholar]
  76. Kozutsumi Y., Segal M., Normington K., Gething M. J., Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar 31;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
  77. Kuznetsov G., Bush K. T., Zhang P. L., Nigam S. K. Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8584–8589. doi: 10.1073/pnas.93.16.8584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Kuznetsov G., Chen L. B., Nigam S. K. Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum. J Biol Chem. 1997 Jan 31;272(5):3057–3063. doi: 10.1074/jbc.272.5.3057. [DOI] [PubMed] [Google Scholar]
  79. Kuznetsov G., Chen L. B., Nigam S. K. Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J Biol Chem. 1994 Sep 16;269(37):22990–22995. [PubMed] [Google Scholar]
  80. LaMantia M. L., Lennarz W. J. The essential function of yeast protein disulfide isomerase does not reside in its isomerase activity. Cell. 1993 Sep 10;74(5):899–908. doi: 10.1016/0092-8674(93)90469-7. [DOI] [PubMed] [Google Scholar]
  81. LaMantia M., Miura T., Tachikawa H., Kaplan H. A., Lennarz W. J., Mizunaga T. Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4453–4457. doi: 10.1073/pnas.88.10.4453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Laboissiere M. C., Sturley S. L., Raines R. T. The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds. J Biol Chem. 1995 Nov 24;270(47):28006–28009. doi: 10.1074/jbc.270.47.28006. [DOI] [PubMed] [Google Scholar]
  83. Lamberg A., Jauhiainen M., Metso J., Ehnholm C., Shoulders C., Scott J., Pihlajaniemi T., Kivirikko K. I. The role of protein disulphide isomerase in the microsomal triacylglycerol transfer protein does not reside in its isomerase activity. Biochem J. 1996 Apr 15;315(Pt 2):533–536. doi: 10.1042/bj3150533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Lammert E., Stevanović S., Brunner J., Rammensee H. G., Schild H. Protein disulfide isomerase is the dominant acceptor for peptides translocated into the endoplasmic reticulum. Eur J Immunol. 1997 Jul;27(7):1685–1690. doi: 10.1002/eji.1830270714. [DOI] [PubMed] [Google Scholar]
  85. Lee A. S., Delegeane A., Scharff D. Highly conserved glucose-regulated protein in hamster and chicken cells: preliminary characterization of its cDNA clone. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4922–4925. doi: 10.1073/pnas.78.8.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Lewis M. J., Mazzarella R. A., Green M. Structure and assembly of the endoplasmic reticulum. The synthesis of three major endoplasmic reticulum proteins during lipopolysaccharide-induced differentiation of murine lymphocytes. J Biol Chem. 1985 Mar 10;260(5):3050–3057. [PubMed] [Google Scholar]
  87. Lilie H., McLaughlin S., Freedman R., Buchner J. Influence of protein disulfide isomerase (PDI) on antibody folding in vitro. J Biol Chem. 1994 May 13;269(19):14290–14296. [PubMed] [Google Scholar]
  88. Lim C. J., Geraghty D., Fuchs J. A. Cloning and nucleotide sequence of the trxA gene of Escherichia coli K-12. J Bacteriol. 1985 Jul;163(1):311–316. doi: 10.1128/jb.163.1.311-316.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Lundström-Ljung J., Birnbach U., Rupp K., Söling H. D., Holmgren A. Two resident ER-proteins, CaBP1 and CaBP2, with thioredoxin domains, are substrates for thioredoxin reductase: comparison with protein disulfide isomerase. FEBS Lett. 1995 Jan 9;357(3):305–308. doi: 10.1016/0014-5793(94)01386-f. [DOI] [PubMed] [Google Scholar]
  90. Lundström J., Holmgren A. Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry. 1993 Jul 6;32(26):6649–6655. doi: 10.1021/bi00077a018. [DOI] [PubMed] [Google Scholar]
  91. Lundström J., Krause G., Holmgren A. A Pro to His mutation in active site of thioredoxin increases its disulfide-isomerase activity 10-fold. New refolding systems for reduced or randomly oxidized ribonuclease. J Biol Chem. 1992 May 5;267(13):9047–9052. [PubMed] [Google Scholar]
  92. Lyles M. M., Gilbert H. F. Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N- and C-terminal domains. J Biol Chem. 1994 Dec 9;269(49):30946–30952. [PubMed] [Google Scholar]
  93. Macer D. R., Koch G. L. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J Cell Sci. 1988 Sep;91(Pt 1):61–70. doi: 10.1242/jcs.91.1.61. [DOI] [PubMed] [Google Scholar]
  94. Mandel R., Ryser H. J., Ghani F., Wu M., Peak D. Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4112–4116. doi: 10.1073/pnas.90.9.4112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Marcus N., Green M. NF-Y, a CCAAT box-binding protein, is one of the trans-acting factors necessary for the response of the murine ERp72 gene to protein traffic. DNA Cell Biol. 1997 Sep;16(9):1123–1131. doi: 10.1089/dna.1997.16.1123. [DOI] [PubMed] [Google Scholar]
  96. Mark D. F., Richardson C. C. Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1976 Mar;73(3):780–784. doi: 10.1073/pnas.73.3.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Martin J. L., Bardwell J. C., Kuriyan J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature. 1993 Sep 30;365(6445):464–468. doi: 10.1038/365464a0. [DOI] [PubMed] [Google Scholar]
  98. Martin J. L. Thioredoxin--a fold for all reasons. Structure. 1995 Mar 15;3(3):245–250. doi: 10.1016/s0969-2126(01)00154-x. [DOI] [PubMed] [Google Scholar]
  99. Mazzarella R. A., Marcus N., Haugejorden S. M., Balcarek J. M., Baldassare J. J., Roy B., Li L. J., Lee A. S., Green M. Erp61 is GRP58, a stress-inducible luminal endoplasmic reticulum protein, but is devoid of phosphatidylinositide-specific phospholipase C activity. Arch Biochem Biophys. 1994 Feb 1;308(2):454–460. doi: 10.1006/abbi.1994.1064. [DOI] [PubMed] [Google Scholar]
  100. Mazzarella R. A., Srinivasan M., Haugejorden S. M., Green M. ERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J Biol Chem. 1990 Jan 15;265(2):1094–1101. [PubMed] [Google Scholar]
  101. Miyaishi O., Kozaki K., Iida K., Isobe K., Hashizume Y., Saga S. Elevated expression of PDI family proteins during differentiation of mouse F9 teratocarcinoma cells. J Cell Biochem. 1998 Mar 15;68(4):436–445. doi: 10.1002/(sici)1097-4644(19980315)68:4<436::aid-jcb4>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  102. Mkrtchian S., Fang C., Hellman U., Ingelman-Sundberg M. A stress-inducible rat liver endoplasmic reticulum protein, ERp29. Eur J Biochem. 1998 Jan 15;251(1-2):304–313. doi: 10.1046/j.1432-1327.1998.2510304.x. [DOI] [PubMed] [Google Scholar]
  103. Mobbs C. V., Fink G., Pfaff D. W. HIP-70: a protein induced by estrogen in the brain and LH-RH in the pituitary. Science. 1990 Mar 23;247(4949 Pt 1):1477–1479. doi: 10.1126/science.247.4949.1477. [DOI] [PubMed] [Google Scholar]
  104. Monnat J., Hacker U., Geissler H., Rauchenberger R., Neuhaus E. M., Maniak M., Soldati T. Dictyostelium discoideum protein disulfide isomerase, an endoplasmic reticulum resident enzyme lacking a KDEL-type retrieval signal. FEBS Lett. 1997 Dec 1;418(3):357–362. doi: 10.1016/s0014-5793(97)01415-4. [DOI] [PubMed] [Google Scholar]
  105. Morjana N. A., Gilbert H. F. Effect of protein and peptide inhibitors on the activity of protein disulfide isomerase. Biochemistry. 1991 May 21;30(20):4985–4990. doi: 10.1021/bi00234a021. [DOI] [PubMed] [Google Scholar]
  106. Murthy M. S., Pande S. V. A stress-regulated protein, GRP58, a member of thioredoxin superfamily, is a carnitine palmitoyltransferase isoenzyme. Biochem J. 1994 Nov 15;304(Pt 1):31–34. doi: 10.1042/bj3040031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Murthy M. S., Pande S. V. Carnitine medium/long chain acyltransferase of microsomes seems to be the previously cloned approximately 54 kDa protein of unknown function. Mol Cell Biochem. 1993 May 26;122(2):133–138. doi: 10.1007/BF01076097. [DOI] [PubMed] [Google Scholar]
  108. Myllylä R., Kaska D. D., Kivirikko K. I. The catalytic mechanism of the hydroxylation reaction of peptidyl proline and lysine does not require protein disulphide-isomerase activity. Biochem J. 1989 Oct 15;263(2):609–611. doi: 10.1042/bj2630609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Nigam S. K., Goldberg A. L., Ho S., Rohde M. F., Bush K. T., Sherman MYu A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily. J Biol Chem. 1994 Jan 21;269(3):1744–1749. [PubMed] [Google Scholar]
  110. Nilson L. A., Schüpbach T. Localized requirements for windbeutel and pipe reveal a dorsoventral prepattern within the follicular epithelium of the Drosophila ovary. Cell. 1998 Apr 17;93(2):253–262. doi: 10.1016/s0092-8674(00)81576-7. [DOI] [PubMed] [Google Scholar]
  111. Noiva R., Freedman R. B., Lennarz W. J. Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites. J Biol Chem. 1993 Sep 15;268(26):19210–19217. [PubMed] [Google Scholar]
  112. Oliver J. D., van der Wal F. J., Bulleid N. J., High S. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science. 1997 Jan 3;275(5296):86–88. doi: 10.1126/science.275.5296.86. [DOI] [PubMed] [Google Scholar]
  113. Ostermeier M., De Sutter K., Georgiou G. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J Biol Chem. 1996 May 3;271(18):10616–10622. doi: 10.1074/jbc.271.18.10616. [DOI] [PubMed] [Google Scholar]
  114. Otsu M., Omura F., Yoshimori T., Kikuchi M. Protein disulfide isomerase associates with misfolded human lysozyme in vivo. J Biol Chem. 1994 Mar 4;269(9):6874–6877. [PubMed] [Google Scholar]
  115. Otsu M., Urade R., Kito M., Omura F., Kikuchi M. A possible role of ER-60 protease in the degradation of misfolded proteins in the endoplasmic reticulum. J Biol Chem. 1995 Jun 23;270(25):14958–14961. doi: 10.1074/jbc.270.25.14958. [DOI] [PubMed] [Google Scholar]
  116. Phillips J. L., Holdengreber V., Ben-Shaul Y., Zhang J., Tolan D. R., Hausman R. E. Developmental localization of retina cognin synthesis by in situ hybridization. Brain Res Dev Brain Res. 1997 Dec 19;104(1-2):143–152. doi: 10.1016/s0165-3806(97)00172-7. [DOI] [PubMed] [Google Scholar]
  117. Pihlajaniemi T., Helaakoski T., Tasanen K., Myllylä R., Huhtala M. L., Koivu J., Kivirikko K. I. Molecular cloning of the beta-subunit of human prolyl 4-hydroxylase. This subunit and protein disulphide isomerase are products of the same gene. EMBO J. 1987 Mar;6(3):643–649. doi: 10.1002/j.1460-2075.1987.tb04803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Plemper R. K., Böhmler S., Bordallo J., Sommer T., Wolf D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature. 1997 Aug 28;388(6645):891–895. doi: 10.1038/42276. [DOI] [PubMed] [Google Scholar]
  119. Pollard M. G., Travers K. J., Weissman J. S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell. 1998 Jan;1(2):171–182. doi: 10.1016/s1097-2765(00)80018-0. [DOI] [PubMed] [Google Scholar]
  120. Puig A., Gilbert H. F. Anti-chaperone behavior of BiP during the protein disulfide isomerase-catalyzed refolding of reduced denatured lysozyme. J Biol Chem. 1994 Oct 14;269(41):25889–25896. [PubMed] [Google Scholar]
  121. Puig A., Gilbert H. F. Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J Biol Chem. 1994 Mar 11;269(10):7764–7771. [PubMed] [Google Scholar]
  122. Puig A., Lyles M. M., Noiva R., Gilbert H. F. The role of the thiol/disulfide centers and peptide binding site in the chaperone and anti-chaperone activities of protein disulfide isomerase. J Biol Chem. 1994 Jul 22;269(29):19128–19135. [PubMed] [Google Scholar]
  123. Quan H., Fan G., Wang C. C. Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin-like active site. J Biol Chem. 1995 Jul 21;270(29):17078–17080. doi: 10.1074/jbc.270.29.17078. [DOI] [PubMed] [Google Scholar]
  124. Quéméneur E., Guthapfel R., Gueguen P. A major phosphoprotein of the endoplasmic reticulum is protein disulfide isomerase. J Biol Chem. 1994 Feb 25;269(8):5485–5488. [PubMed] [Google Scholar]
  125. Ricci B., Sharp D., O'Rourke E., Kienzle B., Blinderman L., Gordon D., Smith-Monroy C., Robinson G., Gregg R. E., Rader D. J. A 30-amino acid truncation of the microsomal triglyceride transfer protein large subunit disrupts its interaction with protein disulfide-isomerase and causes abetalipoproteinemia. J Biol Chem. 1995 Jun 16;270(24):14281–14285. doi: 10.1074/jbc.270.24.14281. [DOI] [PubMed] [Google Scholar]
  126. Roth R. A., Pierce S. B. In vivo cross-linking of protein disulfide isomerase to immunoglobulins. Biochemistry. 1987 Jul 14;26(14):4179–4182. doi: 10.1021/bi00388a001. [DOI] [PubMed] [Google Scholar]
  127. Ruoppolo M., Freedman R. B., Pucci P., Marino G. Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase. Biochemistry. 1996 Oct 22;35(42):13636–13646. doi: 10.1021/bi960755b. [DOI] [PubMed] [Google Scholar]
  128. Rupp K., Birnbach U., Lundström J., Van P. N., Söling H. D. Effects of CaBP2, the rat analog of ERp72, and of CaBP1 on the refolding of denatured reduced proteins. Comparison with protein disulfide isomerase. J Biol Chem. 1994 Jan 28;269(4):2501–2507. [PubMed] [Google Scholar]
  129. Scherens B., Dubois E., Messenguy F. Determination of the sequence of the yeast YCL313 gene localized on chromosome III. Homology with the protein disulfide isomerase (PDI gene product) of other organisms. Yeast. 1991 Feb;7(2):185–193. doi: 10.1002/yea.320070212. [DOI] [PubMed] [Google Scholar]
  130. Sidrauski C., Chapman R., Walter P. The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol. 1998 Jun;8(6):245–249. doi: 10.1016/s0962-8924(98)01267-7. [DOI] [PubMed] [Google Scholar]
  131. Song J. L., Wang C. C. Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese. Eur J Biochem. 1995 Jul 15;231(2):312–316. doi: 10.1111/j.1432-1033.1995.tb20702.x. [DOI] [PubMed] [Google Scholar]
  132. Song J., Quan H., Wang C. Dependence of the anti-chaperone activity of protein disulphide isomerase on its chaperone activity. Biochem J. 1997 Dec 15;328(Pt 3):841–846. doi: 10.1042/bj3280841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Srivastava S. P., Chen N. Q., Liu Y. X., Holtzman J. L. Purification and characterization of a new isozyme of thiol:protein-disulfide oxidoreductase from rat hepatic microsomes. Relationship of this isozyme to cytosolic phosphatidylinositol-specific phospholipase C form 1A. J Biol Chem. 1991 Oct 25;266(30):20337–20344. [PubMed] [Google Scholar]
  134. Suzuki T., Yan Q., Lennarz W. J. Complex, two-way traffic of molecules across the membrane of the endoplasmic reticulum. J Biol Chem. 1998 Apr 24;273(17):10083–10086. doi: 10.1074/jbc.273.17.10083. [DOI] [PubMed] [Google Scholar]
  135. Tabor S., Huber H. E., Richardson C. C. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J Biol Chem. 1987 Nov 25;262(33):16212–16223. [PubMed] [Google Scholar]
  136. Tachibana C., Stevens T. H. The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol Cell Biol. 1992 Oct;12(10):4601–4611. doi: 10.1128/mcb.12.10.4601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Tachikawa H., Miura T., Katakura Y., Mizunaga T. Molecular structure of a yeast gene, PDI1, encoding protein disulfide isomerase that is essential for cell growth. J Biochem. 1991 Aug;110(2):306–313. doi: 10.1093/oxfordjournals.jbchem.a123576. [DOI] [PubMed] [Google Scholar]
  138. Terada K., Manchikalapudi P., Noiva R., Jauregui H. O., Stockert R. J., Schilsky M. L. Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes. J Biol Chem. 1995 Sep 1;270(35):20410–20416. doi: 10.1074/jbc.270.35.20410. [DOI] [PubMed] [Google Scholar]
  139. Tsibris J. C., Hunt L. T., Ballejo G., Barker W. C., Toney L. J., Spellacy W. N. Selective inhibition of protein disulfide isomerase by estrogens. J Biol Chem. 1989 Aug 25;264(24):13967–13970. [PubMed] [Google Scholar]
  140. Urade R., Kito M. Inhibition by acidic phospholipids of protein degradation by ER-60 protease, a novel cysteine protease, of endoplasmic reticulum. FEBS Lett. 1992 Nov 2;312(1):83–86. doi: 10.1016/0014-5793(92)81415-i. [DOI] [PubMed] [Google Scholar]
  141. Urade R., Nasu M., Moriyama T., Wada K., Kito M. Protein degradation by the phosphoinositide-specific phospholipase C-alpha family from rat liver endoplasmic reticulum. J Biol Chem. 1992 Jul 25;267(21):15152–15159. [PubMed] [Google Scholar]
  142. Urade R., Oda T., Ito H., Moriyama T., Utsumi S., Kito M. Functions of characteristic Cys-Gly-His-Cys (CGHC) and Gln-Glu-Asp-Leu (QEDL) motifs of microsomal ER-60 protease. J Biochem. 1997 Oct;122(4):834–842. doi: 10.1093/oxfordjournals.jbchem.a021830. [DOI] [PubMed] [Google Scholar]
  143. Urade R., Takenaka Y., Kito M. Protein degradation by ERp72 from rat and mouse liver endoplasmic reticulum. J Biol Chem. 1993 Oct 15;268(29):22004–22009. [PubMed] [Google Scholar]
  144. Van der Wal F. J., Oliver J. D., High S. The transient association of ERp57 with N-glycosylated proteins is regulated by glucose trimming. Eur J Biochem. 1998 Aug 15;256(1):51–59. doi: 10.1046/j.1432-1327.1998.2560051.x. [DOI] [PubMed] [Google Scholar]
  145. Van P. N., Peter F., Söling H. D. Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. No indication for calsequestrin-like proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat liver vesicles. J Biol Chem. 1989 Oct 15;264(29):17494–17501. [PubMed] [Google Scholar]
  146. Van P. N., Rupp K., Lampen A., Söling H. D. CaBP2 is a rat homolog of ERp72 with proteindisulfide isomerase activity. Eur J Biochem. 1993 Apr 15;213(2):789–795. doi: 10.1111/j.1432-1033.1993.tb17821.x. [DOI] [PubMed] [Google Scholar]
  147. Vassilakos A., Michalak M., Lehrman M. A., Williams D. B. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry. 1998 Mar 10;37(10):3480–3490. doi: 10.1021/bi972465g. [DOI] [PubMed] [Google Scholar]
  148. Volkmer J., Guth S., Nastainczyk W., Knippel P., Klappa P., Gnau V., Zimmermann R. Pancreas specific protein disulfide isomerase, PDIp, is in transient contact with secretory proteins during late stages of translocation. FEBS Lett. 1997 Apr 14;406(3):291–295. doi: 10.1016/s0014-5793(97)00288-3. [DOI] [PubMed] [Google Scholar]
  149. Vuori K., Myllylä R., Pihlajaniemi T., Kivirikko K. I. Expression and site-directed mutagenesis of human protein disulfide isomerase in Escherichia coli. This multifunctional polypeptide has two independently acting catalytic sites for the isomerase activity. J Biol Chem. 1992 Apr 15;267(11):7211–7214. [PubMed] [Google Scholar]
  150. Vuori K., Pihlajaniemi T., Myllylä R., Kivirikko K. I. Site-directed mutagenesis of human protein disulphide isomerase: effect on the assembly, activity and endoplasmic reticulum retention of human prolyl 4-hydroxylase in Spodoptera frugiperda insect cells. EMBO J. 1992 Nov;11(11):4213–4217. doi: 10.1002/j.1460-2075.1992.tb05515.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Walker K. W., Gilbert H. F. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J Biol Chem. 1997 Apr 4;272(14):8845–8848. doi: 10.1074/jbc.272.14.8845. [DOI] [PubMed] [Google Scholar]
  152. Walker K. W., Lyles M. M., Gilbert H. F. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine. Biochemistry. 1996 Feb 13;35(6):1972–1980. doi: 10.1021/bi952157n. [DOI] [PubMed] [Google Scholar]
  153. Wang S., Trumble W. R., Liao H., Wesson C. R., Dunker A. K., Kang C. H. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol. 1998 Jun;5(6):476–483. doi: 10.1038/nsb0698-476. [DOI] [PubMed] [Google Scholar]
  154. Weichsel A., Gasdaska J. R., Powis G., Montfort W. R. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure. 1996 Jun 15;4(6):735–751. doi: 10.1016/s0969-2126(96)00079-2. [DOI] [PubMed] [Google Scholar]
  155. Weissman J. S., Kim P. S. Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature. 1993 Sep 9;365(6442):185–188. doi: 10.1038/365185a0. [DOI] [PubMed] [Google Scholar]
  156. Wells W. W., Xu D. P., Yang Y. F., Rocque P. A. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem. 1990 Sep 15;265(26):15361–15364. [PubMed] [Google Scholar]
  157. Wetterau J. R., Combs K. A., McLean L. R., Spinner S. N., Aggerbeck L. P. Protein disulfide isomerase appears necessary to maintain the catalytically active structure of the microsomal triglyceride transfer protein. Biochemistry. 1991 Oct 8;30(40):9728–9735. doi: 10.1021/bi00104a023. [DOI] [PubMed] [Google Scholar]
  158. Wetterau J. R., Combs K. A., Spinner S. N., Joiner B. J. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem. 1990 Jun 15;265(17):9800–9807. [PubMed] [Google Scholar]
  159. Whiteley E. M., Hsu T. A., Betenbaugh M. J. Thioredoxin domain non-equivalence and anti-chaperone activity of protein disulfide isomerase mutants in vivo. J Biol Chem. 1997 Sep 5;272(36):22556–22563. doi: 10.1074/jbc.272.36.22556. [DOI] [PubMed] [Google Scholar]
  160. Wunderlich M., Glockshuber R. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 1993 May;2(5):717–726. doi: 10.1002/pro.5560020503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Wunderlich M., Otto A., Maskos K., Mücke M., Seckler R., Glockshuber R. Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol. 1995 Mar 17;247(1):28–33. doi: 10.1006/jmbi.1995.0119. [DOI] [PubMed] [Google Scholar]
  162. Xu Z., Mayer A., Muller E., Wickner W. A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J Cell Biol. 1997 Jan 27;136(2):299–306. doi: 10.1083/jcb.136.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Xu Z., Wickner W. Thioredoxin is required for vacuole inheritance in Saccharomyces cerevisiae. J Cell Biol. 1996 Mar;132(5):787–794. doi: 10.1083/jcb.132.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Yao Y., Zhou Y., Wang C. Both the isomerase and chaperone activities of protein disulfide isomerase are required for the reactivation of reduced and denatured acidic phospholipase A2. EMBO J. 1997 Feb 3;16(3):651–658. doi: 10.1093/emboj/16.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Yoshimori T., Semba T., Takemoto H., Akagi S., Yamamoto A., Tashiro Y. Protein disulfide-isomerase in rat exocrine pancreatic cells is exported from the endoplasmic reticulum despite possessing the retention signal. J Biol Chem. 1990 Sep 15;265(26):15984–15990. [PubMed] [Google Scholar]
  166. Zapun A., Creighton T. E. Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and alpha-lactalbumin. Biochemistry. 1994 May 3;33(17):5202–5211. doi: 10.1021/bi00183a025. [DOI] [PubMed] [Google Scholar]
  167. Zapun A., Creighton T. E., Rowling P. J., Freedman R. B. Folding in vitro of bovine pancreatic trypsin inhibitor in the presence of proteins of the endoplasmic reticulum. Proteins. 1992 Sep;14(1):10–15. doi: 10.1002/prot.340140104. [DOI] [PubMed] [Google Scholar]
  168. Zapun A., Darby N. J., Tessier D. C., Michalak M., Bergeron J. J., Thomas D. Y. Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem. 1998 Mar 13;273(11):6009–6012. doi: 10.1074/jbc.273.11.6009. [DOI] [PubMed] [Google Scholar]
  169. Zapun A., Petrescu S. M., Rudd P. M., Dwek R. A., Thomas D. Y., Bergeron J. J. Conformation-independent binding of monoglucosylated ribonuclease B to calnexin. Cell. 1997 Jan 10;88(1):29–38. doi: 10.1016/s0092-8674(00)81855-3. [DOI] [PubMed] [Google Scholar]
  170. de Crouy-Chanel A., Kohiyama M., Richarme G. A novel function of Escherichia coli chaperone DnaJ. Protein-disulfide isomerase. J Biol Chem. 1995 Sep 29;270(39):22669–22672. doi: 10.1074/jbc.270.39.22669. [DOI] [PubMed] [Google Scholar]
  171. de Silva A., Braakman I., Helenius A. Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes. J Cell Biol. 1993 Feb;120(3):647–655. doi: 10.1083/jcb.120.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES