Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Apr 1;339(Pt 1):37–42.

Only one of the charged amino acids located in membrane-spanning regions is important for the function of the Saccharomyces cerevisiae uracil permease.

B Pinson 1, J Chevallier 1, D Urban-Grimal 1
PMCID: PMC1220125  PMID: 10085225

Abstract

The transport of uracil into the yeast Saccharomyces cerevisiae is mediated by uracil permease, a specific co-transporter encoded by the FUR4 gene. Uracil permease is a multispan membrane protein that is delivered to the plasma membrane via the secretory pathway. Experimental results led to the proposal of a two-dimensional model of the protein's topology. According to this model, the membrane domain of Fur4p contains three charged amino acid residues (Glu-243, Lys-272 and Glu-539) that are conserved in the members of the FUR family of yeast transporters. We have previously shown that a mis-sense mutation leading to the replacement of Lys-272 by Glu severely impairs the function of uracil permease. In the present paper, the role of the three charged residues present in the membrane-spanning regions of Fur4p was further investigated by using site-directed mutagenesis. The variant permeases were correctly targeted to the plasma membrane and their stabilities were similar to that of the wild-type permease. The effect of the mutations was studied by measuring the uptake constants for uracil on whole cells and equilibrium binding parameters on plasma membrane-enriched fractions. We found no evidence for ionic interaction between either of the glutamic residues in transmembrane segments 3 and 9 and the lysine residue in transmembrane segment 4. Of the three charged residues, only Lys-272 was important for the transport activity of the transporter. Its replacement by Ala, Glu or even Arg strongly impaired both the binding and the translocation of uracil.

Full Text

The Full Text of this article is available as a PDF (139.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andre B. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast. 1995 Dec;11(16):1575–1611. doi: 10.1002/yea.320111605. [DOI] [PubMed] [Google Scholar]
  2. Bonifacino J. S., Lippincott-Schwartz J. Degradation of proteins within the endoplasmic reticulum. Curr Opin Cell Biol. 1991 Aug;3(4):592–600. doi: 10.1016/0955-0674(91)90028-w. [DOI] [PubMed] [Google Scholar]
  3. Brèthes D., Chirio M. C., Napias C., Chevallier M. R., Lavie J. L., Chevallier J. In vivo and in vitro studies of the purine-cytosine permease of Saccharomyces cerevisiae. Functional analysis of a mutant with an altered apparent transport constant of uptake. Eur J Biochem. 1992 Mar 1;204(2):699–704. doi: 10.1111/j.1432-1033.1992.tb16684.x. [DOI] [PubMed] [Google Scholar]
  4. Chirio M. C., Brèthes D., Napias C., Grandier-Vazeille X., Rakotomanana F., Chevallier J. Photoaffinity labelling of the purine-cytosine permease of Saccharomyces cerevisiae. Eur J Biochem. 1990 Nov 26;194(1):293–299. doi: 10.1111/j.1432-1033.1990.tb19456.x. [DOI] [PubMed] [Google Scholar]
  5. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  6. Enjo F., Nosaka K., Ogata M., Iwashima A., Nishimura H. Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. J Biol Chem. 1997 Aug 1;272(31):19165–19170. doi: 10.1074/jbc.272.31.19165. [DOI] [PubMed] [Google Scholar]
  7. Esnault Y., Blondel M. O., Deshaies R. J., Scheckman R., Képès F. The yeast SSS1 gene is essential for secretory protein translocation and encodes a conserved protein of the endoplasmic reticulum. EMBO J. 1993 Nov;12(11):4083–4093. doi: 10.1002/j.1460-2075.1993.tb06092.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galan J. M., Cantegrit B., Garnier C., Namy O., Haguenauer-Tsapis R. 'ER degradation' of a mutant yeast plasma membrane protein by the ubiquitin-proteasome pathway. FASEB J. 1998 Mar;12(3):315–323. doi: 10.1096/fasebj.12.3.315. [DOI] [PubMed] [Google Scholar]
  9. Garnier C., Blondel M. O., Haguenauer-Tsapis R. Membrane topology of the yeast uracil permease. Mol Microbiol. 1996 Sep;21(5):1061–1073. doi: 10.1046/j.1365-2958.1996.621430.x. [DOI] [PubMed] [Google Scholar]
  10. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jund R., Weber E., Chevallier M. R. Primary structure of the uracil transport protein of Saccharomyces cerevisiae. Eur J Biochem. 1988 Jan 15;171(1-2):417–424. doi: 10.1111/j.1432-1033.1988.tb13806.x. [DOI] [PubMed] [Google Scholar]
  12. Kaback H. R. A molecular mechanism for energy coupling in a membrane transport protein, the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5539–5543. doi: 10.1073/pnas.94.11.5539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krebs M. P., Khorana H. G. Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol. 1993 Mar;175(6):1555–1560. doi: 10.1128/jb.175.6.1555-1560.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kölling R., Hollenberg C. P. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 1994 Jul 15;13(14):3261–3271. doi: 10.1002/j.1460-2075.1994.tb06627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Marchal C., Haguenauer-Tsapis R., Urban-Grimal D. A PEST-like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease. Mol Cell Biol. 1998 Jan;18(1):314–321. doi: 10.1128/mcb.18.1.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nelissen B., De Wachter R., Goffeau A. Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev. 1997 Sep;21(2):113–134. doi: 10.1111/j.1574-6976.1997.tb00347.x. [DOI] [PubMed] [Google Scholar]
  18. Pantanowitz S., Bendahan A., Kanner B. I. Only one of the charged amino acids located in the transmembrane alpha-helices of the gamma-aminobutyric acid transporter (subtype A) is essential for its activity. J Biol Chem. 1993 Feb 15;268(5):3222–3225. [PubMed] [Google Scholar]
  19. Poolman B., Konings W. N. Secondary solute transport in bacteria. Biochim Biophys Acta. 1993 Nov 2;1183(1):5–39. doi: 10.1016/0005-2728(93)90003-x. [DOI] [PubMed] [Google Scholar]
  20. Pourcher T., Bibi E., Kaback H. R., Leblanc G. Membrane topology of the melibiose permease of Escherichia coli studied by melB-phoA fusion analysis. Biochemistry. 1996 Apr 2;35(13):4161–4168. doi: 10.1021/bi9527496. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Serrano R., Kielland-Brandt M. C., Fink G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986 Feb 20;319(6055):689–693. doi: 10.1038/319689a0. [DOI] [PubMed] [Google Scholar]
  23. Silve S., Volland C., Garnier C., Jund R., Chevallier M. R., Haguenauer-Tsapis R. Membrane insertion of uracil permease, a polytopic yeast plasma membrane protein. Mol Cell Biol. 1991 Feb;11(2):1114–1124. doi: 10.1128/mcb.11.2.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Singleton C. K. Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene. 1997 Oct 15;199(1-2):111–121. doi: 10.1016/s0378-1119(97)00354-5. [DOI] [PubMed] [Google Scholar]
  25. Sipos L., von Heijne G. Predicting the topology of eukaryotic membrane proteins. Eur J Biochem. 1993 May 1;213(3):1333–1340. doi: 10.1111/j.1432-1033.1993.tb17885.x. [DOI] [PubMed] [Google Scholar]
  26. Urban-Grimal D., Pinson B., Chevallier J., Haguenauer-Tsapis R. Replacement of Lys by Glu in a transmembrane segment strongly impairs the function of the uracil permease from Saccharomyces cerevisiae. Biochem J. 1995 Jun 15;308(Pt 3):847–851. doi: 10.1042/bj3080847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Volland C., Garnier C., Haguenauer-Tsapis R. In vivo phosphorylation of the yeast uracil permease. J Biol Chem. 1992 Nov 25;267(33):23767–23771. [PubMed] [Google Scholar]
  28. Volland C., Urban-Grimal D., Géraud G., Haguenauer-Tsapis R. Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem. 1994 Apr 1;269(13):9833–9841. [PubMed] [Google Scholar]
  29. Wagner R., de Montigny J., de Wergifosse P., Souciet J. L., Potier S. The ORF YBL042 of Saccharomyces cerevisiae encodes a uridine permease. FEMS Microbiol Lett. 1998 Feb 1;159(1):69–75. doi: 10.1111/j.1574-6968.1998.tb12843.x. [DOI] [PubMed] [Google Scholar]
  30. Yoo H. S., Cunningham T. S., Cooper T. G. The allantoin and uracil permease gene sequences of Saccharomyces cerevisiae are nearly identical. Yeast. 1992 Dec;8(12):997–1006. doi: 10.1002/yea.320081202. [DOI] [PubMed] [Google Scholar]
  31. Zhang Y., Pines G., Kanner B. I. Histidine 326 is critical for the function of GLT-1, a (Na+ + K+)-coupled glutamate transporter from rat brain. J Biol Chem. 1994 Jul 29;269(30):19573–19577. [PubMed] [Google Scholar]
  32. de Montigny J., Straub M. L., Wagner R., Bach M. L., Chevallier M. R. The uracil permease of Schizosaccharomyces pombe: a representative of a family of 10 transmembrane helix transporter proteins of yeasts. Yeast. 1998 Aug;14(11):1051–1059. doi: 10.1002/(SICI)1097-0061(199808)14:11<1051::AID-YEA287>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES